MEM INST OSWALDO CRUZ, RIO DE JANEIRO, Vol. 112 | 2017
PAGES: DOI: 10.1590/0074-02760170297 Full paper
Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae) isolated from Didelphis aurita (Mammalia: Didelphidae) in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade

Camila Madeira Tavares Lopes1, Rubem Figueiredo Sadok Menna-Barreto2, Márcio Galvão Pavan3, Mirian Cláudia de Souza Pereira4, André Luiz R Roque1+

1Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Celular, Rio de Janeiro, RJ, Brasil
3Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Rio de Janeiro, RJ, Brasil
4Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil

Abstract

BACKGROUND Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp.

OBJECTIVES We characterise a new species (Trypanosoma janseni n. sp.) isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil.

METHODS The parasites were isolated and a growth curve was performed in NNN and Schneider’s media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp) of the small subunit (18S) ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred.

FINDINGS In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent.

CONCLUSIONS This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently know about the T. cruzi clade.

Financial support: FIOCRUZ, CNPq, FAPERJ.
ALRR and RFSMB were “Jovem Cientista do Nosso Estado” provided by FAPERJ; a post-doctoral grant was provided by CAPES to MGP.
+ Corresponding author: This e-mail address is being protected from spambots. You need JavaScript enabled to view it.
Received 25 July 2017
Accepted 18 September 2017

CONTACT US

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco
sala 201, Manguinhos, 21040-900
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This e-mail address is being protected from spambots. You need JavaScript enabled to view it.

twitterfacebook

SUPPORT PROGRAM

marca fiocruzmarca brasil
marca faperjmarca cnpqmarca capes n marca cope