Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | FEBRUARY 2020
Original Article

Involvement of lipid microdomains in human endothelial cells infected by Streptococcus agalactiae type III belonging to the hypervirulent ST-17

Beatriz Jandre Ferreira1, Pamella Silva Lannes-Costa1, Gabriela da Silva Santos1, Cláudia Mermelstein2, Marcelo Einicker-Lamas3, Prescilla Emy Nagao1,+

1Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Laboratório de Biologia Molecular e Fisiologia de Estreptococos, Rio de Janeiro, RJ, Brasil
2Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brasil
3Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760190398
156 views 16 downloads
ABSTRACT

BACKGROUND Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another.

OBJECTIVES This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae.

METHODS The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-β-cyclodextrin (MβCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy.

FINDINGS In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells.

CONCLUSIONS The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.

REFERENCES
01. Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics and epidemiology. Front Microbiol. 2018; 9: 437.
02. Gibbs RS, Schrag S, Schuchat A. Perinatal infections due to group B streptococci. Obstet Gynecol. 2004; 104(5): 1062-76.
03. Lazzarin M, Mu R, Fabbrini M, Ghezzo C, Rinaudo CD, Doran KS, et al. Contribution of pilus type 2b to invasive disease caused by a Streptococcus agalactiae ST-17 strain. BMC Microbiol. 2017; 17(1): 148.
04. Hartlova A, Cerveny L, Hubalek M, Krocova Z, Stulik J. Membrane rafts: a potential gateway for bacterial entry into host cells. Microbiol Immunol. 2010; 54(4): 237-45.
05. Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell. 2010; 102(7): 391-407.
06. George KS, Wu S. Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol. 2012; 259(3): 311-9.
07. Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010; 11(10): 688-99.
08. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009; 78: 857-902.
09. Goluszko P, Popov V, Wen J, Jones A, Yallampalli C. Group B Streptococcus exploits lipid rafts and phosphoinositide 3-kinase/Akt signaling pathway to invade human endometrial cells. Am J Obstet Gynecol. 2008; 199(5): 548.e1-9.
10. Ohtsuka H, Iguchi T, Hayashi M, Kaneda M, Iida K, Shimonaka M, et al. SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3 Kinase-dependent Akt phosphorylation. PLoS One 2017; 12(1): e0169609.
11. de Oliveira JSS, Santos GS, Moraes JA, Saliba AM, Barja-Fidalgo TC, Mattos-Guaraldi AL, et al. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Mem Inst Oswaldo Cruz. 2018; 113(6): e140421.
12. Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul. 2015; 57: 130-46.
13. Poyart C, Tazi A, Réglier-Poupet H, Billoët A, Tavares N, Raymond J, et al. Multiplex PCR assay for rapid and accurate capsular typing of group B streptococci. J Clin Microbiol. 2007; 45(6): 1985-8.
14. Santos GS, Loureiro y Penha CV, Mattos-Guaraldi AL, Attias M, Lopes-Bezerra LM, Silva-Filho FC, et al. Group B Streptococcus induces tyrosine phosphorylation of annexin V and glutathione S-transferase in human umbilical vein endothelial cells. Int J Mol Med. 2009; 24(3): 393-9.
15. Samanta D, Mulye M, Clemente TM, Justis AV, Gilk SD. Manipulation of host cholesterol by obligate intracellular bacteria. Front Cell Infect Microbiol. 2017; 7: 165.
16. Seveau S, Bierne H, Giroux S, Prevost MC, Cossart P. Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol. 2004; 166(5): 743-53.
17. Whiteley L, Haug M, Klein K, Willmann M, Bohn E, Chiantia S, et al. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5. PLoS One. 2017; 12(10): e0185715.
18. Dermine JF, Duclos S, Garin J, St-Louis F, Rea S, Parton RG, et al. Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem. 2001; 276(21): 18507-12.
19. Bodin S, Planchon D, Rios Morris E, Comunale F, Gauthier-Rouviere C. Flotillins in intercellular adhesion ― from cellular physiology to human diseases. J Cell Sci. 2014; 127(Pt24): 5139-47.
20. Banning A, Babuke T, Kurrle N, Meister M, Ruonala MO, Tikkanen R. Flotillins regulate focal adhesions by interacting with α-actinin and by influencing the activation of focal adhesion kinase. Cells. 2018; 7(4): 28.
21. Rose SL, Fulton JM, Brown CM, Natale F, Van Mooy BA, Bidle KD. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environ Microbiol. 2014; 16(4): 1150-66.
22. Meister M, Bänfer S, Gärtner U, Koskimies J, Amaddii M, Jacob R, et al. Regulation of cargo transfer between ESCRT-0 and ESCRT-I complexes by flotillin-1 during endosomal sorting of ubiquitinated cargo. Oncogenesis. 2017; 6(6): e344.
23. Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007; 17(13): 1151-6.
24. Niggli V, Meszaros AV, Oppliger C, Tornay S. Impact of cholesterol depletion on shape changes, actin reorganization, and signal transduction in neutrophil-like HL-60 cells. Exp Cell Res. 2004; 296(2): 358-68.
25. Jiao H, Zhang Y, Yan Z, Wang ZG, Liu G, Minshall RD, et al. Caveolin-1 Tyr14 phosphorylation induces interaction with TLR4 in endothelial cells and mediates MyD88-dependent signaling and sepsis-induced lung inflammation. J Immunol. 2013; 191(12): 6191-9.
26. Szczepanski A, Owczarek K, Milewska A, Baster Z, Rajfur Z, Mitchell JA, et al. Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Vet Res. 2018; 49(1): 55.
27. Peres C, Yart A, Perret B, Salles JP, Raynal P. Modulation of phosphoinositide 3-kinase activation by cholesterol level suggests a novel positive role for lipid rafts in lysophosphatidic acid signalling. FEBS Lett. 2003; 534(1-3): 164-8.

Financial support: CAPES (Finance Code 001), CNPq, FAPERJ, SR-2/UERJ.BJF and PSL-C contributed equally to this work.
+ Corresponding author: pnagao@uol.com.br/pnagão@uerj.br
 https://orcid.org/0000-0001-6007-0033
Received 29 October 2019
Accepted 5 February 2020

Citation: Ferreira BJ, Lannes-Costa PS, Santos GS, Mermelstein C, Einicker-Lamas M, Nagao PM. Involvement of lipid microdomains in human endothelial cells infected by Streptococcus agalactiae type III belonging to the hypervirulent ST-17. Mem Inst Oswaldo Cruz. 2020; 115: e190398.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz governo
faperj cnpq capes