Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | MARCH 2020
Original Article

Minor Temperature shifts do not affect chromosomal ploidy but cause transcriptomic changes in Leishmania braziliensis promastigotes in vitro  

Nathalia Ballesteros, Nubia M Vásquez, Luz H Patiño, Lissa Cruz-Saavedra, Juan David Ramírez+

 

Universidad del Rosario, Facultad de Ciencias Naturales, Departamento de Biología, Grupo de Investigaciones Microbiológicas, Bogotá, Colombia

DOI: 10.1590/0074-02760190413
ABSTRACT

BACKGROUND The leishmaniases are complex neglected diseases caused by protozoan parasites of the genus LeishmaniaLeishmania braziliensis is the main etiological agent of cutaneous leishmaniasis in the New World. In recent studies, genomic changes such as chromosome and gene copy number variations (CNVs), as well as transcriptomic changes have been highlighted as mechanisms used by Leishmania species to adapt to stress situations.
OBJECTIVES The aim of this study was to determine the effect of short-term minor temperature shifts in the genomic and transcriptomic responses of L. braziliensis promastigotes in vitro.
METHODS Growth curves, genome and transcriptome sequencing of L. braziliensis promastigotes were conducted from cultures exposed to three different temperatures (24ºC, 28ºC and 30ºC) compared with the control temperature (26ºC).
FINDINGS Our results showed a decrease in L. braziliensis proliferation at 30ºC, with around 3% of the genes showing CNVs at each temperature, and transcriptomic changes in genes encoding amastin surface-like proteins, heat shock proteins and transport proteins, which may indicate a direct response to temperature stress.
MAIN CONCLUSIONS This study provides evidence that L. braziliensis promastigotes exhibit a decrease in cell density, and noticeable changes in the transcriptomic profiles. However, there were not perceptible changes at chromosome CNVs and only ~3% of the genes changed their copies in each treatment.

REFERENCES
01. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012; 7(5): e35671. https://doi.org/10.1371/journal.pone.0035671.
02. WHO - World Health Organization. Leishmaniasis: epidemiological situation. 2019. Available from: https://www.who.int/leishmaniasis/ burden/en/.
03. Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J Med Entomol. 2013; 50(5): 955-8. https://doi.org/10.1603/ ME13053.
04. Zilberstein D, Shapira M. The role of pH and temperature in the development of Leishmania parasites. Ann Rev Microbiol. 1994; 48(1): 449-70.
05. Koch LK, Kochmann J, Klimpel S, Cunze S. Modeling the climatic suitability of leishmaniasis vector species in Europe. Scie Rep. 2017; 7(1): 1-10. https://doi.org/10.1038/s41598-017-13822-1.
06. Lawrence F, Robert-Gero M. Induction of heat shock and stress proteins promastigotes of three Leishmania species. PNAS USA. 1985; 82(13): 4414-7.
07. Toye P, Remold H. The influence of temperature and serum deprivation on the synthesis of heat-shock proteins and alpha and beta tubulin in promastigotes of Leishmania major. Mol Biochem Parasitol. 1989; 35(1): 1-10.
08. Folgueira C, Quijada L, Soto M, Abanades DR, Alonso C, Requena JM. The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3ʹ-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. J Biol Chem. 2005; 280(42): 35172-83. https://doi. org/10.1074/jbc.M505559200.
09. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011; 21(12): 2143-56. https://doi.org/10.1101/gr.123430.111.Freely.
10. Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int J Parasitol Drugs Drug Resist. 2018; 8(2): 246- 64. https://doi.org/10.1016/j.ijpddr.2018.04.002.
11. Bussotti G, Gouzelou E, Boité MC, Kherachi I, Harrat Z, Eddaikra N, et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio. 2018; 9(6): pii: e01399-18. https://doi.org/10.1128/mBio.01399-18.
12. Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC, Gerbasi RV, et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics. 2015; 16(715). https://doi.org/10.1186/ s12864-015-1928-z.
13. Dumetz F, Imamura H, Sanders M, Seblov V, Myskova J, Pescher P. Modulation of aneuploidy in Leishmania in vitro and in vivo environments and its impact on gene expression. mBio. 2017; 8(3): 1-14. https://doi.org/10.1128/mBio.00599-17.
14. Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, et al. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio. 2017; 8(5): e01393-17. https:// doi.org/, and 10.1128/mBio.01393-17.
15. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011; 21(12): 2129-42. https://doi.org/10.1101/ gr.122945.111.
16. Nedwell DB. Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol. 1999; 30(2): 101-11. https://doi.org/10.1109/ PESGM.2017.8273824.
17. Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends in Parasitol. 2012; 28(9): 370-6. https://doi.org/10.1016/j. pt.2012.06.003.
18. Lopez M, Cherkasov A, Nandan D. Molecular architecture of Leishmania EF-1a reveals a novel site that may modulate protein translation: a possible target for drug development. Biochem Biophys Res Commun. 2007; 356(4): 886-92. https://doi.org/10.1016/j. bbrc.2007.03.077.
19. Ramírez CA, Requena JM, Puerta CJ. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression. BMC Genomics. 2013; 14(454). https://doi.org/10.1186/1471-2164-14-454.
20. Bakker-Grunwald T. Ion transport in parasitic protozoa. J Exp Biol. 1992; 172: 311-12.
21. Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol. 2012; 181(2): 61-72. https://doi.org/10.1016/j. molbiopara.2011.10.002.
22. Späth GF, Drini S, Rachidi N. A touch of Zen: post-translational regulation of the Leishmania stress response. Cell Microbiol. 2015; 17(5): 632-8. https://doi.org/10.1111/cmi.12440.
23. Zilka A, Garlapati S, Dahan E, Yaolsky V, Shapira M. Developmental regulation of heat shock protein 83 in Leishmania. J Biol Chem. 2001; 276(51): 47922-9. https://doi.org/10.1074/jbc. M108271200.
24. Seraphim TV, Alves MM, Silva IM, Gomes FER, Silva KP, Murta SMF, et al. Low resolution structural studies indicate that the activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis has an elongated shape which allows its interaction with both N- and M-domains of Hsp90. PLoS ONE. 2013; 8(6): e66822. https://doi. org/10.1371/journal.pone.0066822.
25. Bifeld E, Lorenzen S, Bartsch K, Vasquez J-J, Siegel T, Clos J. Ribosome profiling reveals HSP90 inhibitor effects on stage-specific protein synthesis in Leishmania donovani. mSystems. 2018; 3(6): e00214-18. https://doi.org/10.1128/mSystems.00214-18.
26. Hombach A, Ommen G, Chrobak M, Clos J. The Hsp90–Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cell Microbiol. 2013; 15(4): 585-600. https://doi. org/10.1111/cmi.12057.
27. Paiva RMC, Grazielle-Silva V, Cardoso MS, Nakagaki BN, Mendonca- Neto RP, Canavaci AM, et al. Amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathogens. 2015; 11(12): 1-24. https://doi.org/10.1371/journal.ppat.1005296.
28. Leprohon P, Le D, Girard I, Papadopoulou B, Ouellette M. Modulation of Leishmania ABC protein gene expression through life stages and among drug-resistant parasites. Eukaryotic Cell. 2006; 5(10): 1713-25. https://doi.org/10.1128/EC.00152-06.
29. Parodi-Talice A, Araújo JM, Torres C, Pérez-Victoria JM, Gamarro F, Castanys S. The overexpression of a new ABC transporter in Leishmania is related to phospholipid trafficking and reduced infectivity. Biochim Biophys Acta. 2003; 1612(2): 195-207. https:// doi.org/10.1016/S0005-2736(03)00131-7.
30. Rastrojo A, Corvo L, Lombraña R, Solana JC, Aguado B, Requena JM. Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Scie Rep. 2019: 9(6919): 1-18. https://doi.org/10.1038/s41598-019-43354-9.

Financial support: Dirección de Investigación e Innovación from
Universidad del Rosario.
JDRG (PhD) is a Latin American fellow in the Biomedical Sciences,
supported by The Pew Charitable Trusts.
NB and NMV contributed equally to this work.
+ Corresponding author: juand.ramirez@urosario.edu.co
https://orcid.org/0000-0002-1344-9312
Received 05 November 2019
Accepted 03 March 2020

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz governo
faperj cnpq capes