Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | MARCH 2020
Original Article

DNA nanovaccines prepared using LemA antigen protect Golden Syrian hamsters against Leptospira lethal infection

Thaís Larré Oliveira1, Kátia Leston Bacelo1, Karine Maciel Forster1, Vinicius Ilha2, Oscar Endrigo Rodrigues2, Daiane D Hartwig1,3/+

1Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Programa de Pós-Graduação em Biotecnologia, Núcleo de Biotecnologia, Pelotas, RS, Brasil
2Universidade Federal de Santa Maria, Departamento de Química, Santa Maria, RS, Brasil
3Universidade Federal de Pelotas, Instituto de Biologia, Departamento de Microbiologia e Parasitologia, Pelotas, RS, Brasil

DOI: 10.1590/0074-02760190396
93 views 6 downloads

BACKGROUND Nanoparticles (NPs) are viable candidates as carriers of exogenous materials into cells via transfection and can be used in the DNA vaccination strategy against leptospirosis.

OBJECTIVES We evaluated the efficiency of halloysite clay nanotubes (HNTs) and amine-functionalised multi-walled carbon nanotubes (NH2-MWCNTs) in facilitating recombinant LemA antigen (rLemA) expression and protecting Golden Syrian hamsters (Mesocricetus auratus) against Leptospira interrogans lethal infection.

METHODS An indirect immunofluorescent technique was used to investigate the potency of HNTs and NH2-MWCNTs in enhancing the transfection and expression efficiency of the DNA vaccine in Chinese hamster ovary (CHO) cells. Hamsters were immunised with two doses of vaccines HNT-pTARGET/lemA, NH2-MWCNTs-pTARGET/lemA, pTARGET/lemA, and empty pTARGET (control), and the efficacy was determined in terms of humoral immune response and protection against a lethal challenge.

FINDINGS rLemA DNA vaccines carried by NPs were able to transfect CHO cells effectively, inducing IgG immune response in hamsters (p < 0.05), and did not exhibit cytotoxic effects. Furthermore, 83.3% of the hamsters immunised with NH2-MWCNTs-pTARGET/lemA were protected against the lethal challenge (p < 0.01), and 66.7% of hamsters immunised with HNT-pTARGET/lemA survived (p < 0.05).

MAIN CONCLUSIONS NH2-MWCNTs and HNTs can act as antigen carriers for mammalian cells and are suitable for DNA nanovaccine delivery.

01. Dellagostin OA, Grassmann AA, Hartwig DD, Felix SR, da Silva EF, McBride AJ. Recombinant vaccines against leptospirosis. Hum Vaccin. 2011; 7(11): 1215-24.
02. Dellagostin OA, Grassmann AA, Rizzi C, Schuch RA, Jorge S, Oliveira TL, et al. Reverse vaccinology: an approach for identifying leptospiral vaccine candidates. Int J Mol Sci. 2017; 18(1): 158.
03. Grassmann AA, Kremer FS, dos Santos JC, Souza JD, Pinto LS, McBride AJA. Discovery of novel leptospirosis vaccine candidates using reverse and structural vaccinology. Front Immunol. 2017; 8: 463.
04. Hartwig DD, Seixas FK, Cerqueira GM, McBride AJ, Dellagostin AO. Characterization of the immunogenic and antigenic potential of putative lipoproteins from Leptospira interrogans. Curr Microbiol. 2011; 62: 1337-41.
05. Hartwig DD, Forster KM, Oliveira TL, Amaral M, McBride AJ, Dellagostin OA. A prime-boost strategy using the novel vaccine candidate, LemA, protects hamsters against leptospirosis. Clin Vaccine Immunol. 2013; 20(5): 747-52.
06. Oliveira TL, Schuch RA, Inda GR, Roloff BC, Neto ACPS, Amaral M, et al. LemA and Erp Y-like recombinant proteins from Leptospira interrogans protect hamsters from challenge using AddaVax™ as adjuvant. Vaccine. 2018; 36(19): 2574-80.
07. Silva EF, Medeiros MA, McBride AJ, Matsunaga J, Esteves GS, Ramos JG, et al. The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis. Vaccine. 2007; 25(33): 6277-86.
08. Bacelo KL, Hartwig DD, Seixas FK, Schuch R, Moreira AS, Amaral M, et al. Xanthan gum as an adjuvant in a subunit vaccine preparation against leptospirosis. Biomed Res Int. 2014; 636491.
09. Hartwig DD, Bacelo KL, Oliveira PD, Oliveira TL, Seixas FK, Amaral MG, et al. Mannosylated LigANI produced in Pichia pastoris protects hamsters against leptospirosis. Curr Microbiol. 2014; 68(4): 524-30.
10. Hartwig DD, Bacelo KL, Oliveira TL, Schuch R, Seixas FK, Collares T, et al. The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response. Mem Inst Oswaldo Cruz. 2015; 110(1): 134-7.
11. Oliveira TL, Bacelo KL, Schuch R, Seixas FK, Collares T, Rodrigues OED, et al. Immune response in hamsters immunised with a recombinant fragment of LigA from Leptospira interrogans, associated with carrier molecules. Mem Inst Oswaldo Cruz. 2016; 111(11): 712-16.
12. Rahimian S, Kleinovink JW, Fransen MF, Mezzanotte L, Gold H, Wisse P, et al. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: in vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response. Biomaterials. 2015; 37: 469-77.
13. Silveira MM, Oliveira TL, Schuch RA, McBride AJA, Dellagostin OA, Hartwig DD, et al. DNA vaccines against leptospirosis: a literature review. Vaccine. 2017; 35(42): 5559-67.
14. Noh YW, Jang YS, Ahn KJ, Lim YT, Chung BH. Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response. Biomaterials. 2011; 32(26): 6254-63.
15. Kalam MA, Khan AA, Alshamsan A. Non-invasive administration of biodegradable nano-carrier vaccines. Am J Transl Res. 2017; 9(1): 15-35.
16. Gao L, Nie L, Wang T, Qin Y, Guo Z, D Yang, et al. Carbon nanotube delivery of the GFP gene into mammalian cells. Chembiochem. 2006; 7(2): 239-42.
17. Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, et al. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol. 2003; 10(10): 961-6.
18. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010; 11(3): 820-6.
19. Porter KR, Raviprakash K. DNA vaccine delivery and improved immunogenicity. Curr Issues Mol Biol. 2017; 22: 129-38.
20. Stéfani D, Paula AJ, Vaz BG, Silva RA, Andrade NF, Justo GZ, et al. Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. J Hazard Mater. 2011; 189(1-2): 391-6.
21. Chidawanyika W, Nyokong T. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon. 2010; 48(10): 2831-8.
22. Oliveira TL, Rizzi C, da Cunha CEP, Dorneles J, Seixas Neto ACP, Amaral MG, et al. Recombinant BCG strains expressing chimeric proteins derived from Leptospira protect hamsters against leptospirosis. Vaccine. 2019; 37(6): 776-82.
23. Hayat SMG, Darroudi M. Nanovaccine: a novel approach in immunization. J Cell Physiol. 2019; 234(8): 12530-6.
24. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 2010; 7: 5.
25. Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 2011; 5(9): 6861-70.
26. Bussy C, Paineau E, Cambedouzou J, Brun N, Mory C, Fayard B, et al. Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol. 2012; 9: 46.
27. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008: 38(5): 1404-13.
28. Pantarotto D, Partidos CD, Graff R, Hoebeke J, Briand JP, Prato M, et al. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J Am Chem Soc. 2003; 125(20): 6160-4.
29. Zeinali M, Jammalan M, Ardestani SK, Mosaveri N. Immunological and cytotoxicological characterization of tuberculin purified protein derivative (PPD) conjugated to single-walled carbon nanotubes. Immunol Lett. 2009; 126(1-2): 48-53.
30. Rieger C, Kunhardt D, Kaufmann A, Schendel D, Huebner D, Erdmann K. Characterization of different carbon nanotubes for the development of a mucoadhesive drug delivery system for intravesical treatment of bladder cancer. Int J Pharm. 2015; 479(2): 357-63.

Financial support: CAPES, CNPq, FAPERGS.
+ Corresponding author:
Received 28 October 2019
Accepted 03 March 2020

CITATION: Oliveira TL, Bacelo KL, Forster KM, Ilha V, Rodrigues OE, Hartwig DD. DNA nanovaccines prepared using LemA antigen protect Golden Syrian hamsters against Leptospira lethal infection. Mem Inst Oswaldo Cruz. 2020; 115: e190396.


Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program


fiocruz governo
faperj cnpq capes