Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | MAY 2020
Short communication

Coagulation modifiers targeting SARS-CoV-2 main protease Mpro for COVID-19 treatment: an in silico approach

Ísis Venturi Biembengut , Tatiana de Arruda Campos Brasil de Souza+

Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Proteômica Estrutural e Computacional, Curitiba, PR, Brasil

DOI: 10.1590/0074-02760200179
1074 views 99 downloads

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection depends on viral polyprotein processing, catalysed by the main proteinase (Mpro). The solution of the SARS-CoV-2 Mpro structure allowed the investigation of potential inhibitors. This work aims to provide first evidences of the applicability of commercially approved drugs to treat coronavirus disease-19 (COVID-19). We screened 4,334 compounds to found potential inhibitors of SARS-CoV-2 replication using an in silico approach. Our results evidenced the potential use of coagulation modifiers in COVID-19 treatment due to the structural similarity of SARS-CoV-2 Mpro and human coagulation factors thrombin and Factor Xa. Further in vitro and in vivo analysis are needed to corroborate these results.

01. Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology. 2005; 3(11): e428.
02. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368(6489): 409-12.
03. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018. 46(D1): 1074-82.
04. Hinsen K. The molecular modeling toolkit: a new approach to molecular simulations. J Comput Chem. 2000; 21(2): 79-85.
05. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16): 2785-91.
06. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-61.
07. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection ― a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020; 9(1): 727-32.
08. Beck DL. Coronavirus disease 2019 (COVID-19) provides potent reminder of the risk of infectious agents. Cardiology Magazine. 2020.
09. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020; 18(5): 1094-9.
10. Di Nisio M, Middeldorp S, Büller HR. Direct thrombin inhibitors. N Engl J Med. 2005; 353(10): 1028-40.
11. Bächli E. New anticoagulants - direct factor Xa-inhibitors. Ther Umsch. 2012; 69(11): 635-41.
12. Cervantes CE, Merino JL, Barrios V. Edoxaban for the prevention of stroke in patients with atrial fibrillation. Expert Rev Cardiovasc Ther. 2019; 17(4): 319-30.
13. Connolly SJ, Eikelboom J, Dorian P, Hohnloser SH, Gretler DD, Sinha U, et al. Betrixaban compared with warfarin in patients with atrial fibrillation: results of a phase 2, randomized, dose-ranging study (Explore-Xa). Eur Heart J. 2013; 34(20): 1498-505.
14. Zhang P, Huang W, Wang L, Bao L, Jia ZJ, Bauer SM, et al. Discovery of betrixaban (PRT054021), N-(5-chloropyridin-2-yl)- 2-(4-(N,N-dimethylcarbamimidoyl)benzamido)-5-methoxybenzamide, a highly potent, selective, and orally efficacious factor Xa inhibitor. Bioorg Med Chem Lett. 2009; 19(8): 2179-85.
15. Skelley JW, Thomason AR, Nolen JC, Candidate P. Betrixaban (Bevyxxa): a direct-acting oral anticoagulant factor Xa inhibitor. PT. 2018; 43(2): 85-120.
16. Bode W, Mayr I, Baumann U, Huber R, Stone SR, Hofsteenge J. The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 1989; 8(11): 3467-75.
17. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-7.
18. Venugopal A. Disseminated intravascular coagulation. Indian J Anaesth. 2014; 58(5): 603-8.
19. Kawano N, Wada H, Uchiyama T, Kawasugi K, Madoiwa S, Takezako N, et al. Analysis of the association between resolution of disseminated intravascular coagulation (DIC) and treatment outcomes in post-marketing surveillance of thrombomodulin alpha for DIC with infectious disease and with hematological malignancy by organ failure. Thromb J. 2020; 18(2): doi: 10.1186/ s12959-020-0216-6.
20. Levi M, Ten CH. Disseminated intravascular coagulation. N Engl J Med. 1999; 341(8): 586-592.
21. Han H, Yang L, Liu R, Liu F, Wu K, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020; pii: /j/cclm.ahead-of-print/cclm-2020- 0188/cclm-2020-0188.xml. doi: 10.1515/cclm-2020-0188. [Epub ahead of print].
22. Ezihe-Ejiofor JA, Hutchinson N. Anticlotting mechanisms 1: physiology and pathology. BJA Education. 2013; 13(3): 87-92.
23. Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensinconverting enzyme 2. Circulation. 2005; 111(20): 2605-10.
24. Watkins J. Preventing a covid-19 pandemic. BMJ. 2020; 368: m810.
25. Chu C-M, Poon LLM, Cheng VCC, Chan K-S, Hung IFN, Wong MML, et al. Initial viral load and the outcomes of SARS. CMAJ. 2004; 171(11): 1349-52.

+ Corresponding author:
Received 17 April 2020
Accepted 18 May 2020

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program


fiocruz governo
faperj cnpq capes