Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | MAY 2020
Short communication

Superinfection exclusion studies using West Nile virus and Culex flavivirus strains from Argentina

Silvina Goenaga1, 2,+, Julieta Goenaga3, Estefanía Raquel Boaglio1, 2, Delia Alcira Enria 1, Silvana del Carmen Levis1

1Instituto Nacional de Enfermedades Virales Humanas Dr Julio I Maiztegui, Pergamino, Buenos Aires, Argentina
2Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Buenos Aires, Argentina
3Århus University, Århus Institute of Advanced Studies, Århus, Denmark

DOI: 10.1590/0074-02760200012
232 views 60 downloads
ABSTRACT

In Argentina, many Flavivirus were recognised including West Nile virus (WNV). During 2009 several strains of Culex Flavivirus (CxFV), an insect-specific flavivirus, were isolated in the same region where circulation of WNV was detected. Hence, the objective of this study was to analyse the effect of co-infection in vitro assays using CxFV and WNV Argentinean strains in order to evaluate if CxFV could affect WNV replication. Our results showed that WNV replication was suppressed when multiplicity of infection (MOI) for CxFV was 10 or 100 times higher than WNV. Nevertheless, in vivo assays are necessary in order to evaluate the superinfection exclusion potential.

REFERENCES
01. King AMQ, Adams MJ, Carsten EB, Lefkowitz EJ. Virus taxonomy: classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Inc. 2012.
02. Bolling BG, Vasilakis N, Guzman H, Widen SG, Wood TG, Popov VL, et al. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence. Am J Trop Med Hyg. 2015 ;92(2): 422-8.
03. Tscherne DM, Evans MJ, von Hahn T, Jones CT, Stamataki Z, McKeating JA, et al. Superinfection exclusion in cells infected with hepatitis C virus. J Virol [Internet]. 2007; 81(8): 3693-703. Available from: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=1866098&tool=pmcentrez&rendertype=abstract.
04. Kent RJ, Crabtree MB, Miller BR. Transmission of West Nile virus by Culex quinquefasciatus say infected with Culex flavivirus izabal. PLoS Negl Trop Dis. 2010; 4(5): e671.
05. Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of coinfection on vector competence for West Nile virus. Virology. 2012; 427(2): 90-7.
06. Hobson-Peters J, Yam AWY, Lu JWF, Setoh YX, May FJ, Kurucz N, et al. A new insect-specific Flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley Encephalitis virus in co-infected mosquito cells. PLoS One. 2013; 8(2): e56534.
07. Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, et al. Potential for co-infection of a mosquito-specific Flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses. 2015; 7(11): 5801-12.
08. Kuwata R, Isawa H, Hoshino K, Sasaki T, Kobayashi M, Maeda K, et al. Analysis of mosquito-borne Flavivirus superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) cells persistently infected with Culex flavivirus (Flaviviridae). J Med Entomol. 2015; 52(2): 222-9.
09. Sabattini MS, Aviles G, Monath TO. Historical, epidemiological and ecological aspects of arboviruses in Argentina: Flaviviridae, Bunyaviridae and Rhabdoviridae. In: APA Travassos da Rosa, PFC Vasconcelos, JFS Travassos da Rosa, editors. An overview of arbovirology in Brazil and neighbouring countries. Belém: Instituto Evandro Chagas; 1998. p. 113-34.
10. Morales MA, Barrandeguy M, Fabbri C, Garcia JB, Vissani A, Trono K, et al. West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis. 2006; 12(10): 1559-61.
11. Goenaga S, Fabbri C, Dueñas JCR, Gardenal CN, Rossi GC, Calderon G, et al. Isolation of Yellow Fever virus from mosquitoes in Misiones Province, Argentina. Vector-Borne Zoonotic Dis. 2012; 12(11): 121001062402001.
12. Morales MA, Fabbri CM, Zunino GE, Kowalewski MM, Luppo VC, Enría DA, et al. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of northeastern Argentina. PLoS Negl Trop Dis. 2017; 11(2): e0005351.
13. Diaz LA, Ré V, Almirón WR, Farías A, Vázquez A, Sanchez-Seco MP, et al. Genotype III Saint Louis encephalitis virus outbreak, Argentina, 2005. Emerg Infect Dis. 2006 ;12(11): 1752-4.
14. Artsob H, Gubler DJ, Enria DA, Morales MA, Pupo M, Bunning ML, et al. West Nile virus in the New World: trends in the spread and proliferation of West Nile virus in the Western hemisphere. Zoonoses Public Health. 2009; 56(6-7): 357-69.
15. Goenaga S, Fabbri CM, García JB, Rondán JC, Gardenal N, Calderón GE, et al. New strains of Culex flavivirus isolated in Argentina. J Med Entomol [Internet]. 2014; 51(4): 900-6. Available from: http://jme.oxfordjournals.org/content/51/4/900.abstract.
16. Medina F, Medina JF, Colon C, Vergne E, Santiago GA, Munoz- Jordan JL. Dengue virus: isolation, propagation, quantification, and storage. Curr Protoc Microbiol. 2012; doi: 10.1002/9780471729259.mc15d02s27.
17. Karpf AR, Blake JM, Brown DT. Characterization of the infection of Aedes albopictus cell clones by Sindbis virus. Virus Res. 1997; 50(1): 1-13.
18. Tscherne DM, Evans MJ, von Hahn T, Jones CT, Stamataki Z, McKeating JA, et al. Superinfection exclusion in cells infected with hepatitis C virus. J Virol. 2007; 81(8): 3693-703.
19. Zou G, Zhang B, Lim P-Y, Yuan Z, Bernard KA, Shi P-Y. Exclusion of West Nile virus superinfection through RNA replication. J Virol. 2009; 83(22): 11765-76.
20. Pepin KM, Hanley KA. Density-dependent competitive suppression of sylvatic dengue virus by endemic dengue virus in cultured mosquito cells. Vector Borne Zoonotic Dis. 2008; 8(6): 821-8.
21. Lohmann V, Hoffmann S, Herian U, Penin F, Bartenschlager R. Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol [Internet]. 2003; 77(5): 3007-19. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?a rtid=149776&tool=pmcentrez&rendertype=abstract.
22. Lee Y-M, Tscherne DM, Yun S-I, Frolov I, Rice CM. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol. 2005; 79(6): 3231-42.
23. Westaway EG. Flavivirus replication strategy. Adv Virus Res. 1987; 33(C): 45-90.
24. Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, et al. Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. Vector Borne Zoonotic Dis. 2011; 11(8): 1099-105.
25. Crockett RK, Burkhalter K, Mead D, Kelly R, Brown J, Varnado W, et al. Culex flavivirus and West Nile virus in Culex quinquefasciatus populations in the southeastern United States. J Med Entomol [Internet]. 2012; 49(1): 165-74. Available from: http://www. ncbi.nlm.nih.gov/pubmed/22308785.
26. Micieli MV, Matacchiero AC, Muttis E, Fonseca DM, Aliota MT, Kramer LD. Vector competence of Argentine mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus). J Med Entomol. 2013; 50(4): 853-62.

+ Corresponding author: sgoenaga@anlis.gob.ar
https://orcid.org/0000-0002-5128-2015
Received 10 January 2020
Accepted 08 May 2020

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz governo
faperj cnpq capes