Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | JUNE 2020
Original Article

The influence of meteorological variables on the oviposition dynamics of Aedes aegypti (Diptera: Culicidae) in four environmentally distinct areas in northeast Brazil

Isabella Cristina da Silva Santos1, +, Cynthia Braga2, Wayner Vieira de Souza3, André Luiz Sá de Oliveira4, Lêda Narcisa Regis5

1Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Programa de Pós-Graduação em Saúde Pública, Recife, PE, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Parasitologia, Recife, PE, Brasil
3Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Saúde Coletiva, Recife, PE, Brasil
4Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Núcleo de Estatística e Geoprocessamento, Recife, PE, Brasil
5Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Entomologia, Recife, PE, Brasil

DOI: 10.1590/0074-02760200046
72 views 24 downloads
ABSTRACT

BACKGROUND Fluctuations in climate have been associated with variations in mosquito abundance.
OBJECTIVES To analyse the influence of precipitation, temperature, solar radiation, wind speed and humidity on the oviposition dynamics of Aedes aegypti in three distinct environmental areas (Brasília Teimosa, Morro da Conceição/Alto José do Pinho and Dois Irmãos/Pintos) of the city of Recife and the Fernando de Noronha Archipelago northeastern Brazil.
METHODS Time series study using a database of studies previously carried out in the areas. The eggs were collected using spatially distributed geo-referenced sentinel ovitraps (S-OVTs). Meteorological satellite data were obtained from the IRI climate data library. The association between meteorological variables and egg abundance was analysed using autoregressive models.
FINDINGS Precipitation was positively associated with egg abundance in three of the four study areas with a lag of one month. Higher humidity (β = 45.7; 95% CI: 26.3 - 65.0) and lower wind speed (β = −125.2; 95% CI: −198.8 - −51.6) were associated with the average number of eggs in the hill area.
MAIN CONCLUSIONS The effect of climate variables on oviposition varied according to local environmental conditions. Precipitation was a main predictor of egg abundance in the study settings.

REFERENCES
01. Donalisio MR, Freitas ARR, Zuben APBV. Arboviruses emerging in Brazil: challenges for clinic and implications for public health. Rev Saude Publica. 2017; 51(30): 1-6.
02. Chadee DD, Martinez R. Aedes aegypti (L.) in Latin American and Caribbean Region: with growing evidence for vector adaptation to climate change? Acta Trop. 2016; 156: 137-43.
03. Mogi M, Tuno N. Impact of climate change on the distribution of Aedes albopictus (Diptera: Culicidae) in northern Japan: retrospective analyses. J Med Entomol. 2014; 51(3): 572-9.
04. Morin CW, Comrie AC, Ernst K. Climate and dengue transmission: evidence and implications. Environ Health Perspect. 2013; 121(11-12): 1264-72.
05. Weaver SC. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol. 2013; 21(8): 360-3.
06. Couret J, Dotson E, Benedict MQ. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One. 2014; 9(2): 1-9.
07. Chuang TW, Chaves LF, Chen PJ. Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. PLoS One. 2017; 12(6): 1-20.
08. Christophers SR. Aedes aegypti: the Yellow Fever mosquito: its life history, bionomics and structure. London: Cambridge University Press; 1960.
09. Simões TC, Codeço CT, Nobre AA, Eiras AE. Modeling the nonstationary climate dependent temporal dynamics of Aedes aegypti. PLoS One. 2013; 8(8): 1-10.
10. Magalhães T, Braga C, Marli TC, Oliveira ALS, Castanha PMS, Maciel APR, et al. Zika virus displacement by a Chikungunya outbreak in Recife, Brazil. PLoS Negl Trop Dis. 2017; 11(11): 1-25.
11. Regis L, Monteiro AM, de Melo-Santos MAV, Silveira Jr JC, Furtado AF, Acioli RV, et al. Developing new approaches for detecting and preventing Aedes aegypti population outbreaks: basis for surveillance, alert and control system. Mem Inst Oswaldo Cruz. 2008; 103(1): 50-9.
12. Regis L, Acioli RV, Silveira Jr JC, de Melo-Santos MA, da Cunha MC, Souza F, et al. Characterization of the spatial and temporal dynamics of the dengue vector population established in urban areas of Fernando de Noronha, a Brazilian oceanic island. Acta Trop. 2014; 137: 80-7.
13. IBGE – Instituto Brasileiro de Geografia e Estatística. Ibge.gov.br [homepage on the Internet]. Recife: Cidades [updated 2017 Jan 16; cited 2017 Aug20]. Available from: https://www.ibge.gov.br.
14. Silva MGNM, Rodrigues MAB, Araujo RE. Aedes aegypti egg counting system. In: 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 11). Boston. 2011.
15. Del Corral J, Blumenthal MB, Mantilla G, Ceccato P, Connor SJ, Thomson MC. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system. Geospatial Health. 2012; 6(3): 15-24.
16. Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika. 1987; 52(3): 345-70.
17. Honório NA, Codeço CT, Alves FC, Magalhães MA, Lourençode- Oliveira R. Temporal Distribution of Aedes aegypti in different districts of Rio De Janeiro, Brazil, measured by two types of traps. J Med Entomol. 2009; 46(5): 1001-14.
18. Estallo EL, Ludueña-Almeida FF, Introini MV, Zaidenberg M, Almirón WR. Weather variability associated with Aedes (Stegomyia) aegypti (Dengue vector) oviposition dynamics in northwestern Argentina. PLoS One. 2015; 10(5): 1-11.
19. Surendran SN, Kajatheepan A, Sanjeefkumar KFA, Jude PJ. Seasonality and insecticide susceptibility of dengue vectors: an ovitrap based survey in a residential area of northern Sri Lanka, Southeast, Asian. J Trop Med Public Health. 2007; 38(2): 276-282.
20. Zahouli JBZ, Koudou BG, Müller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis. 2017; 11(7): 1-23.
21. Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018; 9(4): 158.
22. Cortes F, Martelli CMT, Ximenes RAA, Montarroyos UR, Siqueira JBJ, Cruz OG, et al. Time series analysis of dengue surveillance data in two Brazilian cities. Acta Trop. 2018; 182: 190-7.
23. Dickerson CZ. The effects of temperature and humidity on the eggs of Aedes aegypti (L.) and Aedes albopictus (SKUSE) in Texas [Doctoral Thesis]. Texas A&M University: Texas; 2007. 119 pp.
24. Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl Trop Dis. 2011; 5(4): 1-12.
25. Cianci D, Hartemink N, Zeimes CB, Vanwambeke SO, Ienco A, Caputo B. High resolution spatial analysis of habitat preference of Aedes albopictus (Diptera: Culicidae) in an urban environment. J Med Entomol. 2015; 52(3): 329-35.
26. Azil AH, Long SA, Ritchie SA, Williams CR. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health. 2010; 15(10): 1190-7.
27. Jayathilake TA, Wickramasinghe MB, de Silva BG. Oviposition and vertical dispersal of Aedes mosquitoes in multiple storey buildings in Colombo district, Sri Lanka. J Vector Borne Dis. 2015; 52(3): 245-51.
28. Hribar LJ, Demay DJ, Lund UJ. The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. J Vector Ecol. 2010; 35(2): 339-46.
29. Clements AN. The biology of mosquitoes: sensory reception and behviour. Vol. II. London: Chapman & Hall; 2006. 740 pp.
30. Barrera R, Amador M, Clark GG. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol. 2006; 43(3): 484-92.

doi: 10.1590/0074-02760200046
Financial support: CNPq.
CB (scholarship 303953/2018-7) and WVS (scholarship 306222/2013-2) receive partial support from the National Advisory Board of Scientific and
Technological Development (CNPq).
+ Corresponding author: isabella.santos2008@hotmail.com
ORCID https://orcid.org/0000-0001-7261-4480
Received 29 January 2020
Accepted 16 June 2020

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz governo
faperj cnpq capes