Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 115 | JUNE 2020
Original Article

Description of an automatic copulation induction system used to establish a free-mating laboratory colony of Nyssorhynchus deaneorum from Brazil

Maisa da Silva Araujo1,2,3,+, Najara Akira Costa dos Santos1,2, Alice Oliveira Andrade1,2, Raphael Brum Castro1, Alessandra da Silva Bastos1, Fábio Resadore4,5, Luiz Hidelbrando Pereira-da-Silva, Jansen Fernandes Medeiros1,3

1Fundação Oswaldo Cruz-Fiocruz, Laborato?rio de Entomologia, Porto Velho, RO, Brasil
2Universidade Federal de Rondônia, Programa de Po?s-Graduaça?o em Biologia Experimental, Porto Velho, RO, Brasil
3Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Epidemiologia da Amazônia Ocidental, Porto Velho, RO, Brasil
4Fundação Oswaldo Cruz-Fiocruz, Laborato?rio Epidemiologia Genética, Porto Velho, RO, Brasil
5Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Programa de Po?s-Graduaça?o em Biologia Parasitária, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760200070
212 views 14 downloads
ABSTRACT

BACKGROUND Nyssorhynchus deaneorum is a potential malaria vector because it has been shown to be competent to transmit Plasmodium vivax and Plasmodium falciparum, and because it exhibits antropophilic and endophilic behaviors in some regions of the Amazon. This profile makes Ny. deaneorum a useful mosquito for experiments that model Plasmodium-vector interactions in the Amazon.
OBJECTIVE Herein we describe how a free-mating colony of Ny. deaneorum has been established using an automated light stimulation system.
METHODS Mosquitoes were captured in São Francisco do Guaporé, Rondônia. The F1 generation was reared until adult emergence at which point copulation was induced using an automatic copulation induction system (ACIS).
FINDINGS After four generations, natural mating and oviposition began to occur without light stimulation. The number of pupae and adult mosquitoes increased from the F5 to F10 generations. The new Ny. deaneorum colony exhibited susceptibility to P. vivax.
MAIN CONCLUSIONS Automated light stimulation is an effective method for establishing an Ny. deaneorum colony under laboratory conditions as it produces enough adults to create a stenogamic colony. The establishment of a stable, P. vivax susceptible colony of Ny. deaneorum makes it possible to model parasite-vector interactions and to test novel drug therapies that target parasite development in mosquitoes.

REFERENCES
01. Oliveira-Ferreira J, Lourenço-de-Oliveira R, Teva A, Deane LM, Daniel-Ribeiro CT. Natural malaria infections in anophelines in Rondonia state, Brazilian Amazon. Am J Trop Med Hyg. 1990; 43(1): 06-10.
02. Póvoa MM, de Souza RTL, Lacerda RNL, Rosa ES, Galiza D, de Souza JR, et al. The importance of Anopheles albitarsis E and An. darlingi in human malaria transmission in Boa Vista, state of Roraima, Brazil. Mem Inst Oswaldo Cruz. 2006; 101(2): 163-8.
03. Li C, Wilkerson RC. Identification of Anopheles (Nyssorhynchus) albitarsis complex species (Diptera: Culicidae) using rDNA internal transcribed spacer 2-based polymerase chain reaction primes. Mem Inst Oswaldo Cruz. 2005; 100(5): 495-500.
04. Motoki MT, Wilkerson RC, Sallum MAM. The Anopheles albitarsis complex with the recognition of Anopheles oryzalimnetes Wilkerson and Motoki, n. sp. and Anopheles janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2009; 104(6): 823-50.
05. Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin DM, Quiñones ML, et al. DNA barcoding reveals both know and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasit Vectors. 2012; 5(44): 1-12.
06. Laporta GZ, Linton YM, Wilkerson RC, Bergo ES, Nagaki SS, Sant’ana DC, et al. Malaria vectors in South America: current and future scenarios. Parasit Vectors. 2015; 8(426): 1-13.
07. Branquinho MS, Lagos CBT, Rocha RM, Natal D, Barata JMS, Cochrane AH, et al. Anophelines in the state of Acre, Brazil, infected with Plasmodium falciparum, P. vivax, the variant P. vivax VK247 and P. malariae. Trans R Soc Trop Med Hyg. 1993; 87(4): 391-4.
08. Klein TA, Lima JB, Tada MS, Miller R. Comparative susceptibility of anopheline mosquitoes in Rondônia, Brazil to infection by Plasmodium vivax. Am J Trop Med Hyg. 1991; 45(4): 463-70.
09. Klein TA, Lima JBP, Tada MS. Comparative suscetibility of anopheline mosquitoes to Plasmodium falciparum in Rondônia, Brazil. Am J Trop Med Hyg. 1991; 44(6): 598-603.
10. Conn JE, Wilkerson RC, Segura MNO, de Souza RTL, Schlichting CD, Wirtz RA, et al. Emergence of a new Neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg. 2002; 66(1): 18-22.
11. Rosa-Freitas MG. Anopheles (Nyssorhynchus) deaneorum: a new species in the Albitarsis complex (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 1989; 84(4): 535-43.
12. Ferreira-de-Freitas V, França RM, Bartholomay LC, Marcondes CB. Contribution to the biodiversity assessment of mosquitoes (Diptera: Culicidae) in the Atlantic Forest in Santa Catarina, Brazil. J Med Entomol. 2017; 54(2): 368-76.
13. Marinho-e-Silva M, Sallum MAM, Rosa-Freitas MG, Lourençode- Oliveira R, Silva-do-Nascimento TF. Anophelines species and the receptivity and vulnerability to malaria transmission in the Pantanal wetlands, Central Brazil. Mem Inst Oswaldo Cruz. 2018; 113(2): 87-95.
14. Ramirez PG, Stein M, Etchepare EG, Almirón WR. Composition of anopheline community and its seasonal variation in three environments of the city of Puerto Iguazú, Misiones, Argentina. J Med Entomol. 2018; 55(2): 351-9.
15. Foley DH, Linton YM, Ruiz-Lopez JF, Conn JE, Sallum MA, Póvoa MM, et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J Vector Ecol. 2014; 39(1): 168-81.
16. Klein TA, LIMA JBP. Seasonal distribution and bitting patterns of Anopheles mosquitoes in Costa Marques, Rondônia, Brazil. J Am Mosq Control Assoc. 1990; 6(4): 700-07.
17. Klein TA, Lima JBP, Tang AT. Biting behavior of Anopheles mosquitoes in Costa Marques, Rondônia, Brazil. Rev Soc Bras Med Trop. 1991; 24(1): 13-20.
18. Santos JB, Santos F, Macêdo V. Variation of Anopheles density with deltamethrin-impregnated mosquito nets in an endemic malaria area of the Brazilian Amazon. Cad Saude Publica. 1999; 15(2): 281-92.
19. Klein TA, Lima JBP, Toda-Tang A. Colonization and maintenance of Anopheles deaneorum in Brazil. J Am Mosq Control Assoc. 1990; 6(3): 510-13.
20. Marrelli MT, Branquinho MS, Hoffmann EHE, Taipe-Lagos CB, Natal D, Kloetzel JK. Correlation between positive serology for Plasmodium vivax-like/Plasmodium simiovale malaria parasites in the human and anopheline populations in the state of Acre, Brazil. Trans R Soc Trop Med Hyg. 1998; 92(2): 149-51.
21. Araujo MS, Andrade AO, Santos NAC, Pereira DB, Costa GS, Paulo PFM, et al. Brazil’s first free-mating laboratory colony of Nyssorhynchus darlingi. Rev Soc Bras Med Trop. 2019; 52(1): e20190159.
22. Consoli RAGB, Lourenço-de-Oliveira R. Principais mosquitos de importância sanitária no Brasil [online]. Rio de Janeiro: Editora Fiocruz; 1994. 228 pp.
23. Linton Y-M, Pecor JE, Porter CH, Mitchell LB, Garzón-Moreno A, Foley DH, et al. Mosquitoes of eastern Amazonian Ecuador: biodiversity, bionomics and barcodes. Mem Inst Oswaldo Cruz. 2013; 108(Suppl. I): 100-09.
24. Bourke BP, Conn JE, Oliveira TMP, Chaves LSM, Bergo ES, Laporta GZ, et al. Exploring malaria vector diversity on the Amazon Frontier. Malar J. 2018; 17(342): 1-17.
25. Lima JB, Valle D, Peixoto AA. Adaptation of a South American malaria vector to laboratory colonization suggests fastermale evolution for mating ability. BMC Evol Biol. 2004; 4(12): doi:10.1186/1471-2148-4-12.
26. da Silva AN, dos Santos CC, Lacerda RN, Santa Rosa EP, de Souza RT, Galiza D, et al. Laboratory colonization of Anopheles aquasalis (Diptera: Culicidae) in Belém, Pará, Brazil. J Med Entomol. 2006; 43(1): 107-09.
27. Ow Yang CF, Sta Maria FL, Wharton RH. Maintenance of a laboratory colony of Anopheles maculatus Theobald by artificial mating. Mosq News. 1963; 23(1): 34-5.
28. Moreno M, Tong C, Guzmán M, Chuquiyauri R, Llanos-Cuentas A, Rodriguez H, et al. Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax. Am J Trop Med Hyg. 2014; 90(4): 612-6.
29. Villarreal-Treviño C, Vasquez GM, Lopez-Sifuentes VM, Escobedo- Vargas K, Huayanay-Repetto A, Linton YM, et al. Establishment of a free-mating, long-standing and highly productive laboratory colony of Anopheles darlingi from the Peruvian Amazon. Malar J. 2015; 14(227): 1-12.
30. Villarreal C, Arredondo-Jimenez JI, Rodriguez MH, Ulloa A. Colonization of Anopheles pseudopunctipennis from Mexico. J Am Mosq Control Assoc. 1998; 14(4): 369-72.
31. Clements AN. The biology of mosquitoes, sensory and behaviour. Vol. 2. Wallingford: 1999. 752 pp.
32. Charlwood JD, Jones MDR. Mating behaviour in the mosquito, Anopheles gambiae s.l. Physiol Entomol. 1979; 4(2): 111-20.
33. Horosko III S, Lima JBP, Brandolini MB. Establishment of a freemating colony of Anopheles albitarsis from Brazil. J Am Mosq Control Assoc. 1997; 13(1): 95-6.

Financial support: FIOCRUZ/RO, Fapero (grant N02/2014), CAPES (Finance Code 001).
† In memoriam
+ Corresponding author: maisaraujo@gmail.com / maisa.araujo@fiocruz.br
ORCID https://orcid.org/0000-0003-3607-0433
Received 18 February 2020
Accepted 22 June 2020

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz governo
faperj cnpq capes