Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 117 | 2022

Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy

Ana Maria Murta Santi, Silvane Maria Fonseca Murta+

Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil

DOI: 10.1590/0074-02760210401
924 views 215 downloads

Chagas disease and leishmaniasis are neglected tropical diseases caused by the protozoan parasites Trypanosoma cruzi and Leishmania spp., respectively. They are among the most important parasitic diseases, affecting millions of people worldwide, being a considerable global challenge. However, there is no human vaccine available against T. cruzi and Leishmania infections, and their control is based mainly on chemotherapy. Treatments for Chagas disease and leishmaniasis have multiple limitations, mainly due to the high toxicity of the available drugs, long-term treatment protocols, and the occurrence of drug-resistant parasite strains. In the case of Chagas disease, there is still the problem of low cure rates in the chronic stage of the disease. Therefore, new therapeutic agents and novel targets for drug development are urgently needed. Antioxidant defence in Trypanosomatidae is a potential target for chemotherapy because the organisms present a unique mechanism for trypanothione-dependent detoxification of peroxides, which differs from that found in vertebrates. Cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione, involving different enzymes that act in concert. This study provides an overview of the antioxidant defence focusing on iron superoxide dismutase A, tryparedoxin peroxidase, and ascorbate peroxidase and how the enzymes play an important role in the defence against oxidative stress and their involvement in drug resistance mechanisms in T. cruzi and Leishmania spp.

01. WHO - World Health Organization. Chagas disease (also known as American trypanosomiasis) [Internet]. 1 April 2021. 2021 [cited 2021 Aug 6]. Available from: fact-sheets/detail/chagas-disease-(american-trypanosomiasis).
02. Antinori S, Galimberti L, Bianco R, Grande R, Galli M, Corbellino M. Chagas disease in Europe: a review for the internist in the globalized world. Eur J Intern Med. 2017; 43: 6-15.

03. WHO - World Health Organization. Leishmaniasis [Internet]. 20 May 2021. 2021 [cited 2021 Aug 6]. Available from: https://www.
04. Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018; 392(10515): 951-70.

05. Sales-Junior PA, Molina I, Murta SMF, Sánchez-Montalvá A, Salvador F, Corrêa-Oliveira R, et al. Experimental and clinical treatment of Chagas disease: a review. Am J Trop Med Hyg. 2017; 97(5): 1289-303.

06. Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, et al. Trypanosomatid-caused conditions: state of the art of therapeutics and potential applications of lipid-based nanocarriers. Front Chem. 2020; 8: 601151.

07. Irigoín F, Cibils L, Comini MA, Wilkinson SR, Flohé L, Radi R. Free radical biology & medicine insights into the redox biology of Trypanosoma cruzi : trypanothione metabolism and oxidant detoxification. Free Radic Biol Med J. 2008; 45(2008): 733-42.

08. Piñeyro MD, Pizarro JC, Lema F, Pritsch O, Cayota A, Bentley GA, et al. Crystal structure of the tryparedoxin peroxidase from the human parasite Trypanosoma cruzi. J Struct Biol. 2005; 150(1): 11-22.

09. Flohé L, Hecht HJ, Steinert P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med. 1999; 27(9-10): 966-84.

10. Nogoceke E, Gommel DU, Kiess M, Kalisz HM, Flohé L. A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol Chem. 1997; 378(8): 827-36.

11. Krauth-Siegel RL, Meiering SK, Schmidt H. The parasite-specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem. 2003; 384(4): 539-49.

12. Turrens JF. Oxidative stress and antioxidant defenses : a target for the treatment of diseases caused by parasitic protozoa. Mol Asp Med. 2004; 25(1-2): 211-20.

13. Krauth-siegel RL, Comini MA. Biochimica et biophysica acta redox control in trypanosomatids, parasitic protozoa with trypanothione- based thiol metabolism. Biochim Biophys Acta. 2008; 1780(11): 1236-48.

14. Castro H, Tomás AM. Peroxidases of trypanosomatids. Antioxid Redox Signal. 2008; 10(9): 1593-606.

15. Wilkinson SR, Taylor MC, Touitha S, Mauricio IL, Meyer DJ, Kelly JM. TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum. Biochem J. 2002; 364(Pt 3): 787-94.

16. Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem. 2002; 277(19): 17062-71.

17. Ariyanayagam MR, Fairlamb AH. Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol. 2001; 115(2): 189-98.

18. Holler TP, Hopkins PB. Ovothiols as free-radical scavengers and the mechanism of ovothiol-promoted NAD(P)H-O2 oxidoreductase activity. Biochemistry. 1990; 29(7): 1953-61.

19. Abreu IA, Cabelli DE. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim Biophys Acta. 2010; 1804(2): 263-74.

20. Dufernez F, Yernaux C, Gerbod D, Noël C, Chauvenet M, Wintjens R, et al. The presence of four iron-containing superoxide dismutase isozymes in Trypanosomatidae: characterization, subcellular localization, and phylogenetic origin in Trypanosoma brucei. Free Radic Biol Med. 2006; 40(2): 210-25.

21. Getachew F, Gedamu L. Leishmania donovani iron superoxide dismutase A is targeted to the mitochondria by its N-terminal positively charged amino acids. Mol Biochem Parasitol. 2007; 154(1): 62-9.

22. Plewes KA, Barr SD, Gedamu L. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect Immun. 2003; 71(10): 5910-20.

23. Andrade HM, Murta SMF, Chapeaurouge A, Perales J, Nirdé P, Romanha AJ. Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J Proteome Res. 2008; 7(6): 2357-67.

24. Murta SMF, Nogueira FB, Dos Santos PF, Campos FMF, Volpe C, Liarte DB, et al. Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop. 2008; 107(1): 59-65.

25. Nogueira FB, Krieger MA, Nirdé P, Goldenberg S, Romanha AJ, Murta SMF. Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro -induced resistance to benznidazole. Acta Trop. 2006; 100(1-2): 119-32.

26. Piacenza L, Irigoín F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, et al. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J. 2007; 403(2): 323-34.

27. Ghosh S, Goswami S, Adhya S. Role of superoxide dismutase in survival of Leishmania within the macrophage. Biochem J. 2003; 369(Pt 3): 447-52.

28. Mittra B, Laranjeira-Silva MF, Miguel DC, Perrone J, Menezes B, Andrews N. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem. 2017; 292(29): 12324-38.

29. Santi AMM, Silva PA, Santos IFM, Murta SMF. Downregulation of FeSOD-A expression in Leishmania infantum alters trivalent antimony and miltefosine susceptibility. Parasit Vectors. 2021; 14(1): 366.

30. Tessarollo NG, Andrade JM, Moreira DS, Murta SMF. Functional analysis of iron superoxide dismutase-A in wild-type and antimony- resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int. 2015; 64(2): 125-9.

31. Getachew F, Gedamu L. Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol Biochem Parasitol. 2012; 183(1): 42-51.

32. Veronica J, Chandrasekaran S, Dayakar A, Devender M, Prajapati VK, Sundar S, et al. Iron superoxide dismutase contributes to miltefosine resistance in Leishmania donovani. FEBS J. 2019; 286(17): 3488-503.

33. Beltran-Hortelano I, Perez-Silanes S, Galiano S. Trypanothione reductase and superoxide dismutase as current drug targets for Trypanosoma cruzi: an overview of compounds with activity against Chagas disease. Curr Med Chem. 2017; 24(11): 1066-138.

34. Sánchez-Moreno M, Sanz AM, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macias I, et al. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J Med Chem. 2011; 54(4): 970-9.

35. Sánchez-Moreno M, Gómez-Contreras F, Navarro P, Marín C, Olmo F, Yunta MJR, et al. Phthalazine derivatives containing imidazole rings behave as Fe-SOD inhibitors and show remarkable anti-T. cruzi activity in immunodeficient-mouse mode of infection. J Med Chem. 2012; 55(22): 9900-13.

36. Olmo F, Gómez-Contreras F, Navarro P, Marín C, Yunta MJR, Cano C, et al. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem. 2015; 106: 106-19.

37. Sánchez-Moreno M, Marín C, Navarro P, Lamarque L, García- España E, Miranda C, et al. In vitro and in vivo trypanosomicidal activity of pyrazole-containing macrocyclic and macrobicyclic polyamines: their action on acute and chronic phases of Chagas disease. J Med Chem. 2012; 55(9): 4231-43.

38. Olmo F, Marín C, Clares MP, Blasco S, Albelda MT, Soriano C, et al. Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model. Eur J Med Chem. 2013; 70: 189-98.

39. Olmo F, Costas M, Marín C, Rosales MJ, Martín-Escolano R, Cussó O, et al. Tetradentate polyamines as efficient metallodrugs for Chagas disease treatment in murine model. J Chemother. 2017; 29(2): 83-93.

40. Piacenza L, Peluffo G, Alvarez MN, Martínez A, Radi R. Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease. Antioxid Redox Signal. 2013; 19(7): 723-34.

41. Nogueira FB, Ruiz JC, Robello C, Romanha AJ, Murta SMF. Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitol Res. 2009; 104(4): 835-44.

42. Lin Y-C, Hsu J-Y, Chiang S-C, Lee ST. Distinct overexpression of cytosolic and mitochondrial tryparedoxin peroxidases results in preferential detoxification of different oxidants in arsenite-resistant Leishmania amazonensis with and without DNA amplification. Mol Biochem Parasitol. 2005; 142(1): 66-75.

443. Wyllie S, Vickers TJ, Fairlamb AH. Roles of trypanothione S -transferase and tryparedoxin peroxidase in resistance to antimonials. Antimicrob Agents Chemother. 2008; 52(4): 1359-65.

44. Finzi JK, Chiavegatto CWM, Corat KF, Lopez JA, Cabrera OG, Mielniczki-Pereira AA, et al. Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol Biochem Parasitol. 2004; 133(1): 37-43.
45. Wilkinson SR, Temperton NJ, Mondragon A, Kelly JM. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J Biol Chem. 2000; 275(11): 8220-5.
46. Matrangolo FSV, Liarte DB, Andrade LC, de Melo MF, Andrade JM, Ferreira RF, et al. Comparative proteomic analysis of antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013; 190(2): 63-75.
47. Andrade JM, Murta SMF. Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines. Parasit Vectors. 2014; 7: 406.
48. Mandal G, Wyllie S, Singh N, Sundar S, Fairlamb AH, Chatterjee M. Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology. 2007; 134(Pt 12): 1679-87.
49. Wyllie S, Cunningham ML, Fairlamb AH. Dual action of antimonial drugs on thiol redox metabolism in the human pathogen Leishmania donovani. J Biol Chem. 2004; 279(38): 39925-32.
50. Wyllie S, Mandal G, Singh N, Sundar S, Fairlamb AH, Chatterjee M. Elevated levels of tryparedoxin peroxidase in antimony unresponsive Leishmania donovani field isolates. Mol Biochem Parasitol. 2010; 173(2): 162-4.
51. Moreira DS, Monte Neto RL, Andrade JM, Santi AMM, Reis PG, Frézard F, et al. Molecular characterization of the MRPA transporter and antimony uptake in four New World Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drug Resist. 2013; 3: 143-53.
52. Raven EL. Understanding functional diversity and substrate specificity in haem peroxidases: what can we learn from ascorbate peroxidase? Nat Prod Rep. 2003; 20(4): 367-81.
53. Wilkinson SR, Obado SO, Mauricio IL, Kelly JM. Trypanosoma cruzi expresses a plant-like ascorbate- dependent hemoperoxidase localized to the endoplasmic reticulum. PNAS. 2002; 99(21): 13453-8.
54. Adak S, Datta AK. Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J. 2005; 390(Pt 2): 465-74.
55. Nogueira FB, Rodrigues JFA, Correa MMS, Ruiz JC, Romanha AJ, Murta SMF. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz. 2012; 107(4): 494-502.
56. Pal S, Dolai S, Yadav RK, Adak S. Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS One. 2010; 5(6): e11271.
57. Mukherjee A, Boisvert S, Monte-Neto RL, Coelho AC, Raymond F, Mukhopadhyay R, et al. Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol. 2013; 88(1): 189-202.
58. Adak S, Pal S. Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania. Antioxidants Redox Signal. 2013; 19(7): 746-54.
59. Moreira DS, Xavier MV, Murta SMF. Ascorbate peroxidase overexpression protects Leishmania braziliensis against trivalent antimony effects. Mem Inst Oswaldo Cruz. 2018; 113(12): e180377.

Financial support: CNPq (304158/2019-4), FIOCRUZ (Convênio Fiocruz-Institut Pasteur-USP and Programa INOVA FIOCRUZ), FAPEMIG (APQ-02816-21).
SMFM is research fellow supported by CNPq and AMMS is supported by CAPES.
+ Corresponding author:
Received 20 December 2021
Accepted 27 December 2021

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program


faperj cnpq capes