Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 117 | 2022
Perspective

Past and future of trypanosomatids high-throughput phenotypic screening

Rafael Ferreira Dantas1, Eduardo Caio Torres dos Santos2, Floriano Paes Silva Junior1,+

1Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760210402
836 views 235 downloads
ABSTRACT

Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a socalled rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.

REFERENCES
01. Lukeš J, Butenko A, Hashimi H, Maslov DA, Votýpka J, Yurchenko V. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 2018; 34(6): 466-80.

02. Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 2015; 31(10): 460-9.

03. Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017; 10(1): 287.

04. WHO - World Health Organization. Leishmaniasis [updated 2021; cited 2021 Dec 18]. Health topics. Available from: https://www.who. int/health-topics/leishmaniasis#tab=tab_1.
05. Echeverria LE, Morillo CA. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2019; 33(1): 119-34.

06. Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: a systematic review and metaanalysis. PLoS Negl Trop Dis. 2021; 15(3): e0009269.

07. Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther. 2015; 13(8): 995-1029.

08. Nielebock MAP, Moreira OC, Xavier SCC, Miranda LFC, Lima ACB, Pereira TOJS, et al. Association between Trypanosoma cruzi DTU TcII and chronic Chagas disease clinical presentation and outcome in an urban cohort in Brazil. PLoS One. 2020; 15(12): e0243008.

09. de Oliveira MT, Sulleiro E, da Silva MC, Silgado A, de Lana M, da Silva JS, et al. Intra-discrete typing unit TcV genetic variability of Trypanosoma cruzi in Chronic Chagas’ disease Bolivian immigrant patients in Barcelona, Spain. Front Cardiovasc Med. 2021; 8: 665624.

10. Uliana SRB, Trinconi CT, Coelho AC. Chemotherapy of leishmaniasis: present challenges. Parasitology. 2018; 145(4): 464-80.

11. WHO - World Health Organization. Leishmaniasis [updated 2021 May 20; cited 2021 Dec 18]. Newsroom. Available from: https:// www.who.int/news-room/fact-sheets/detail/leishmaniasis.
12. Zulfiqar B, Shelper TB, Avery VM. Leishmaniasis drug discovery: recent progress and challenges in assay development. Drug Discov Today. 2017; 22(10): 1516-31.

13. Sasidharan S, Saudagar P. Leishmaniasis: where are we and where are we heading? Parasitol Res. 2021; 120(5): 1541-54.

14. CDC - Centers of Disease Control and Prevention. Leishmaniasis [updated 2017 Dec 14; cited 2021 Dec 18]. DPDx - Laboratory identification of parasites of public health concern. Available from: https://www.cdc.gov/dpdx/leishmaniasis/index.html.
15. Aronson NE, Joya CA. Cutaneous Leishmaniasis: updates in diagnosis and management. Infect Dis Clin North Am. 2019; 33(1): 101-17.

16. Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018; 392(10151): 951-70.

17. Villalta F, Rachakonda G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin Drug Discov. 2019; 14(11): 1161-74.

18. Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, et al. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nat Rev Microbiol. 2017; 15(4): 217-31.

19. Chatelain E, Ioset J-R. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov. 2018; 13(2): 141-53.

20. Barrias ES, Reignault LC, De Souza W, Carvalho TMU. Dynasore, a dynamin inhibitor, inhibits Trypanosoma cruzi entry into peritoneal macrophages. PLoS One. 2010; 5(1): e7764.

21. Neal RA, Croft SL. An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother. 1984; 14(5): 463-75.

22. Berman JD, Lee LS. Activity of antileishmanial agents against amastigotes in human monocyte-derived macrophages and in mouse peritoneal macrophages. J Parasitol. 1984; 70(2): 220-5.

23. Atienza J, Martínez-Díaz RA, Gómez-Barrio A, Escario JA, Herrero A, Ochoa C, et al. Activity assays of thiadiazine derivatives on Trichomonas vaginalis and amastigote forms of Trypanosoma cruzi. Chemotherapy. 1992; 38(6): 441-6.

24. Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol. 2004; 155(4): 224-30.

25. Nohara LL, Lema C, Bader JO, Aguilera RJ, Almeida IC. Highcontent imaging for automated determination of host-cell infection rate by the intracellular parasite Trypanosoma cruzi. Parasitol Int. 2010; 59(4): 565-70.

26. Sereno D, Cordeiro-da-Silva A, Mathieu-Daude F, Ouaissi A. Advances and perspectives in Leishmania cell based drug-screening procedures. Parasitol Int. 2007; 56(1): 3-7.

27. Franco CH, Alcântara LM, Chatelain E, Freitas-Junior L, Moraes CB. Drug discovery for Chagas disease: impact of different host cell lines on assay performance and hit compound selection. Trop Med Infect Dis. 2019; 4(2): 82.

28. Tatipaka HB, Gillespie JR, Chatterjee AK, Norcross NR, Hulverson MA, Ranade RM, et al. Substituted 2-phenylimidazopyridines: a new class of drug leads for human African trypanosomiasis. J Med Chem. 2014; 57(3): 828-35.

29. Nühs A, De Rycker M, Manthri S, Comer E, Scherer CA, Schreiber SL, et al. Development and validation of a novel Leishmania donovani screening cascade for high-throughput screening using a novel axenic assay with high predictivity of leishmanicidal intracellular activity. PLoS Negl Trop Dis. 2015; 9(9): e0004094.

30. Paloque L, Vidal N, Casanova M, Dumètre A, Verhaeghe P, Parzy D, et al. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. J Microbiol Methods. 2013; 95(3): 320-3.

31. Sykes ML, Avery VM. A luciferase based viability assay for ATP detection in 384-well format for high throughput whole cell screening of Trypanosoma brucei brucei bloodstream form strain 427. Parasit Vectors. 2009; 2(1): 54.

32. Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M. Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral leishmaniasis. Parasitol Int. 2005; 54(2): 119-22.

33. Rai P, Arya H, Saha S, Kumar D, Bhatt TK. Drug repurposing based novel anti-leishmanial drug screening using in-silico and invitro approaches. J Biomol Struct Dyn. 2021: 1-9.
34. Henriques C, Moreira TLB, Maia-Brigagão C, Henriques-Pons A, Carvalho TMU, de Souza W. Tetrazolium salt based methods for high-throughput evaluation of anti-parasite chemotherapy. Anal Methods. 2011; 3(9): 2148-55.
35. Bilbao-Ramos P, Sifontes-Rodríguez S, Dea-Ayuela MA, Bolás- Fernández F. A fluorometric method for evaluation of pharmacological activity against intracellular Leishmania amastigotes. J Microbiol Methods. 2012; 89(1): 8-11.

Financial support: CNPq, CAPES, FAPERJ, FAPEG, FIOCRUZ.
ECTS and FPSJr are CNPq research fellows and FAPERJ CNE fellowships recipients.
+ Corresponding author: floriano@ioc.fiocruz.br
ORCID https://orcid.org/ 0000-0003-4560-1291.
Received 20 December 2021
Accepted 28 December 2021

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

ioc

fiocruz 
faperj cnpq capes