REFERENCES
01. da Silva EB, Pereira GAN, Ferreira RS. Trypanosomal cysteine peptidases: target validation and drug design strategies. In: Sylke M, Rachel C, Ovidiu R, Paul MS, editors. Comprehensive analysis of parasite biology: rrom metabolism to drug discovery. Weinheim, Germany: Wiley-VCH; 2016. p. 121-45.
02. Santos VC, Oliveira AER, Campos ACB, Reis-Cunha JL, Bartholomeu DC, Teixeira SMR, et al. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci Rep. 2021; 11(1): 18231.
03. Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem. 2006; 281(18): 12824-32.
04. Nascimento IJS, de Aquino TM, da Silva-Júnior EF. Cruzain and rhodesain inhibitors: last decade of advances in seeking for new compounds against American and African trypanosomiases. Curr Top Med Chem. 2021; 21(21): 1871-99.
05. Silva LR, Guimarães AS, do Nascimento J, Nascimento IJS, da Silva EB, McKerrow JH, et al. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg Med Chem. 2021; 41: 116213.
06. De Souza ML, Rezende Jr CO, Ferreira RS, Chávez RME, Ferreira LLG, Slafer BW, et al. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: a structure-based drug design approach. J Chem Inf Model. 2020; 60(2): 1028-41.
07. Ferreira RAA, Pauli I, Sampaio TS, de Souza ML, Ferreira LLG, Magalhães LG, et al. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-Trypanosoma cruzi activity. Front Chem. 2019; 7: 798.
08. Barbosa da Silva E, Rocha DA, Fortes IS, Yang W, Monti L, Siqueira- Neto JL, et al. Structure-based optimization of quinazolines as cruzain and Tbr CATL inhibitors. J Med Chem. 2021; 64(17): 13054-71.
09. Pereira GAN, da Silva EB, Braga SFP, Leite PG, Martins LC, Vieira RP, et al. Discovery and characterization of trypanocidal cysteine protease inhibitors from the ‘malaria box.’ Eur J Med Chem. 2019; 179: 765-78.
10. Martins LC, Torres PHM, de Oliveira RB, Pascutti PG, Cino EA, Ferreira RS. Investigation of the binding mode of a novel cruzain inhibitor by docking, molecular dynamics, ab initio and MM/PBSA calculations. J Comput Aided Mol Des. 2018; 32(5): 591-605.
11. Santos LH, Waldner BJ, Fuchs JE, Pereira GAN, Liedl KR, Caffarena ER, et al. Understanding structure-activity relationships for trypanosomal cysteine protease inhibitors by simulations and free energy calculations. J Chem Inf Model. 2019; 59(1): 137-48.
12. Luchi AM, Villafañe RN, Gómez-Chávez JL, Bogado ML, Angelina EL, Peruchena NM. Combining charge density analysis with machine learning tools to investigate the cruzain inhibition mechanism. ACS Omega. 2019; 4(22): 19582-94.
13. Lameiro RF, Shamim A, Rosini F, Cendron R, Batista PHJ, Montanari CA. Synthesis, biochemical evaluation and molecular modeling studies of nonpeptidic nitrile-based fluorinated compounds. Future Med Chem. 2021; 13(1): 25-43.
14. Silva JRA, Cianni L, Araujo D, Batista PHJ, de Vita D, Rosini F, et al. Assessment of the cruzain cysteine protease reversible and irreversible covalent inhibition mechanism. J Chem Inf Model. 2020; 60(3): 1666-77.
15. Rosas-Jimenez JG, Garcia-Revilla MA, Madariaga-Mazon A, Martinez- Mayorga K. Predictive global models of cruzain inhibitors with large chemical coverage. ACS Omega. 2021; 6(10): 6722-35.
16. Álvarez LH, Gomes DEB, González JEH, Pascutti PG. Dissecting a novel allosteric mechanism of cruzain: a computer-aided approach. PLoS One. 2019; 14(1): e0211227.