REFERENCES
01. WHO - World Health Organization. Chagas disease (American trypanosomiasis). 2021. Available from: https://www.who.int/ news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
02. Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ, et al. Chagas disease: from discovery to a worldwide health problem. Front Public Health. 2019; 2: 166.
03. WHO - World Health Organization. Investing to overcome the global impact of neglected tropical diseases: third WHO report on neglected diseases. Library Cataloguing-in-Publication Data. 2015; 2: 75-81.
04. Pinheiro E, Brum-Soares L, Reis R, Cubides JC. Chagas disease: review of needs, neglect, and obstacles to treatment access in Latin America. Rev Soc Bras Med Trop. 2017; 50(3): 296-300.
05. DNDi - Drugs for Neglected Diseases initiative. Chagas disease. 2021. Available from: https://dndi.org/diseases/chagas/facts/.
06. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis. 2013; 13(4): 342-8.
07. Ferreira LG, de Oliveira MT, Andricopulo AD. Advances and progress in Chagas disease drug discovery. Curr Top Med Chem. 2016; 16(20): 2290-302.
08. Sangenito LS, Branquinha MH, Santos ALS. Funding for Chagas disease: a 10-year (2009-2018) survey. Trop Med Infect Dis. 2020; 5(2): 88.
09. Mendes FSNS, Perez-Molina JA, Angheben A, Meymandi SK, Sosa- Estani S, Molina I. Critical analysis of Chagas disease treatment in different countries. Mem Inst Oswaldo Cruz. 2021; 116: e210034.
10. Sangenito LS, Santos VS, d’Avila-Levy CM, Branquinha MH, Santos ALS, Oliveira SSC. Leishmaniasis and Chagas disease - neglected tropical diseases: treatment updates. Curr Top Med Chem. 2019; 19(3): 174-7.
11. Arrowsmith J, Harrison R. Drug repositioning: the business case and current strategies to repurpose shelved candidates and marketed drugs. John Wiley Sons, Inc.: 2012; 7-32.
12. Nosengo N. Can you teach old drugs new tricks? Nature. 2016; 534(7607): 314-6.
13. Sbaraglin ML, Vanrell MC, Bellera CL, Benaim G, Carrillo C, Talevi A, et al. Neglected tropical protozoan diseases: drug repositioning as a rational option. Curr Top Med Chem. 2016; 16(19): 2201-22.
14. Ferreira LG, Andricopulo AD. Drug repositioning approaches to parasitic diseases: a medicinal chemistry perspective. Drug Discov Today. 2016; 21(10): 1699-710.
15. Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing trends in computational drug repositioning. Pharmaceuticals (Basel). 2018; 11: E57.
16. Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem. 2016; 59(7): 2849-78.
17. Tsantrizos YS. Peptidomimetic therapeutic agents targeting the protease enzyme of the human immunodeficiency virus and hepatitis C virus. Chem Res. 2008; 41(10): 1252-63.
18. Ebrahim O, Mazanderani AH. Recent developments in HIV treatment and their dissemination in poor countries. Infect Dis Rep. 2013; 5: e2.
19. Mastrolorenzo A, Rusconi S, Scozzafava A, Barbaro G, Supuran CT. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem. 2007; 14(26); 2734-48.
20. Alfonso Y, Monzote L. HIV protease inhibitors: effect on the opportunistic protozoan parasites. Open Med Chem J. 2011; 5: 40-50.
21. Santos ALS, d’Avila-Levy CM, Kneipp LF, Sodré CL, Sangenito LS, Branquinha MH. The widespread anti-protozoal action of HIV aspartic peptidase inhibitors: focus on Plasmodium spp., Leishmania spp. and Trypanosoma cruzi. Curr Top Med Chem. 2017; 17(11): 1303-17.
22. Pintado V, Martín-Rabadán P, Rivera ML, Moreno S, Bouza E. Visceral leishmaniasis in human immunodeficiency virus (HIV)- infected and non HIV infected patients. A comparative study. Medicine. 2001; 80(1): 54-73.
23. Corti M, Yampolsky C. Prolonged survival and immune reconstitution after chagasic meningoencephalitis in a patient with acquired immunodeficiency syndrome. Rev Soc Bras Med Trop. 2006; 39(1): 85-8.
24. Pérez-Molina JA. Management of Trypanosoma cruzi coinfection in HIV-positive individuals outside endemic areas. Curr Opin Infect Dis. 2014; 27(1): 9-15.
25. Sangenito LS, Menna-Barreto RF, d’Avila-Levy CM, Santos ALS, Branquinha MH. Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model. PLoS One. 2014: 9; e113957.
26. Sangenito LS, Gonçalves DS, Seabra SH, d’Avila-Levy CM, Santos ALS, Branquinha MH. HIV aspartic peptidase inhibitors are effective drugs against the trypomastigote form of the human pathogen Trypanosoma cruzi. Int J Antimicrob Agents. 2016; 48(4): 440-4.
27. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas’ disease. Science. 2005; 309(5733): 409-15.
28. Pinho RT, Beltramini LM, Alves CR, Giovanni-De-Simone S. Trypanosoma cruzi: isolation and characterization of aspartyl proteases. Exp Parasitol. 2009; 122(2): 128-33.
29. Lechuga GC, Napoleão-Pêgo P, Bottino CCG, Pinho RT, Provance-Jr DW, De-Simone SG. Trypanosoma cruzi presenilinlike transmembrane aspartyl protease: characterization and cellular localization. Biomolecules. 2020; 10(11): 1564.
30. Castilho VVS, Gonçalves KCS, Rebello KM, Baptista LPR, Sangenito LS, Santos HLC, et al. Docking simulation between HIV peptidase inhibitors and Trypanosoma cruzi aspartyl peptidase. BMC Res Notes. 2018; 11(1): 825.
31. Piccinini M, Rinaudo MT, Anselmino A, Buccinnà B, Ramondetti C, Dematteis A, et al. The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antivir Ther. 2005; 10(2): 215223.
32. De Barros S, Zakaroff-Girard A, Lafontan M, Galitzky J, Bourlier V. Inhibition of human preadipocyte proteasomal activity by HIV protease inhibitors or specific inhibitor lactacystin leads to a defect in adipogenesis, which involves matrix metalloproteinase-9. J Pharmacol Exp Ther. 2007; 320(1): 291-9.
33. Reyskens KM, Essop MF. HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system. Biochim Biophys Acta. 2014; 1842(2): 256-68.
34. Bellera CL, Balcazar DE, Vanrell MC, Casassa AF, Palestro PH, Gavernet L, et al. Computer guided drug repurposing: identification of trypanocidal activity of lofazimine, benidipine and saquinavir. Eur J Med Chem. 2015; 93: 338-48.
35. Sangenito LS, Menna-Barreto RFS, d’Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV aspartyl peptidase inhibitors for combating the neglected human pathogen Trypanosoma cruzi. Curr Med Chem. 2019; 26(36): 6590-613.
36. Sangenito LS, Menna-Barreto RFS, Oliveira ACS, d’Avila-Levyd CM, Branquinha MH, Santos ALS. Primary evidences of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms. Int J Antimicrob Agents. 2018; 52(2): 185-94.
37. Santa-Rita RM, Barbosa HS, de Castro SL. Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitol Res. 2006; 100(1): 187-90.
38. Díaz-Chiguer DL, Hernández-Luis F, Nogueda-Torres B, Castillo R, Reynoso-Ducoing O, Hernández-Campos A, et al. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes. Mem Inst Oswaldo Cruz. 2014; 109(6): 757-60.
39. Estrada V, Portilla J. Dyslipidemia related to antiretroviral therapy. AIDS Rev. 2011; 13(1): 49-56.
40. Menna-Barreto RF, Salomão K, Dantas AP, Santa-Rita RM, Soares MJ, Barbosa HS, et al. Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron. 200; 40(2): 157-68.
41. Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, et al. Autophagy in protists. Autophagy. 2011; 7(2): 127-58.
42. Sangenito LS, d’Avila-Levy CM, Branquinha MH, Santos ALS. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents. 2016; 48(6): 703-11.
43. Clevenbergh P, Mouly S, Sellier P, Badsi E, Cervoni J, Vincent V, et al. Improving HIV infection management using antiretroviral plasma drug levels monitoring: a clinician’s point of view. Curr HIV Res. 2004; 2(4): 309-21.
44. Estrela RC, Ribeiro FS, Seixas BV, Suarez-Kurtz G. Determination of lopinavir and ritonavir in blood plasma, seminal plasma, saliva and plasma ultra-filtrate by liquid chromatography/tandem mass spectrometry detection. Rapid Commun Mass. Spectrom. 2008; 22(5): 657-64.