Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 118 | 2023
Perspective

Anxiety, depression, and memory loss in Chagas disease: a puzzle far beyond neuroinflammation to be unpicked and solved*

Joseli Lannes-Vieira1,+, Glaucia Vilar-Pereira1, Leda Castaño Barrios1, Andrea Alice Silva2

1Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
2Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, Laboratório Multidisciplinar de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Niterói, RJ, Brasil

DOI: 10.1590/0074-02760220287
1523 views 436 downloads
ABSTRACT

Mental disorders such as anxiety, depression, and memory loss have been described in patients with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Social, psychological, and biological stressors may take part in these processes. There is a consensus on the recognition of an acute nervous form of CD. In chronic CD patients, a neurological form is associated with immunosuppression and neurobehavioural changes as sequelae of stroke. The chronic nervous form of CD has been refuted, based on the absence of histopathological lesions and neuroinflammation; however, computed tomography shows brain atrophy. Overall, in preclinical models of chronic T. cruzi infection in the absence of neuroinflammation, behavioural disorders such as anxiety and depression, and memory loss are related to brain atrophy, parasite persistence, oxidative stress, and cytokine production in the central nervous system. Interferon-gamma (IFN?)-bearing microglial cells are colocalised with astrocytes carrying T. cruzi amastigote forms. In vitro studies suggest that IFN? fuels astrocyte infection by T. cruzi and implicate IFN?-stimulated infected astrocytes as sources of TNF and nitric oxide, which may also contribute to parasite persistence in the brain tissue and promote behavioural and neurocognitive changes. Preclinical trials in chronically infected mice targeting the TNF pathway or the parasite opened paths for therapeutic approaches with a beneficial impact on depression and memory loss. Despite the path taken, replicating aspects of the chronic CD and testing therapeutic schemes in preclinical models, these findings may get lost in translation as the chronic nervous form of CD does not fulfil biomedical model requirements, as the presence of neuroinflammation, to be recognised. It is hoped that brain atrophy and behavioural and neurocognitive changes are sufficient traits to bring the attention of researchers to study the biological and molecular basis of the central nervous system commitment in chronic CD.

REFERENCES
01. Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and neurodegenerative disease: is the adaptive immune system a friend or foe? Front Aging Neurosci. 2020; 12: 572090.

02. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci. 2022; 23(13): 7273.

03. Dattani S, Ritchie H, Roser M. Mental health. Our World Data [Internet]. [updated August 2021; cited 2022 Oct 24]. Available from: https://ourworldindata.org/mental-health.
04. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018; 12: 49.

05. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011; 25(2): 181-213.

06. Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017; 17(1): 49-59.

07. WHO - World Health Organization [homepage on the Internet]. Chagas disease (American trypanosomiasis). 2022 [cited 2022 Oct 24]. Available from: https://www.who.int/health-topics/chagas- disease#tab=tab_1.
08. WHO - World Health Organization [homepage on the Internet]. The London declaration on neglected tropical diseases. 2012 [cited 2022 Oct 24]. Available from: https://unitingtocombatntds. org/resource-hub/who-resources/london-declaration-neglectedtropical- diseases/.
09. Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz. 1909; 1(2): 159-218.
10. Dias JCP, Ramos Jr AN, Gontijo ED, Luquetti A, Shikanai-Yasuda MA, Coura JR, et al. 2nd Brazilian Consensus on Chagas Disease, 2015. Epidemiol Serv Saude. 2016; 25: 7-86.

11. Bianchi TF, Jeske S, Grala APP, Leon IF, Bedin C, Mello F, et al. Current situation of Chagas disease vectors (Hemiptera, Reduviidae) in Southern Rio Grande do Sul State, Brazil. Rev Inst Med Trop São Paulo. 2021; 63(e47).

12. UNITAID [homepage on the Internet]. Detecting and treating congenital transmission of Chagas is key to eliminate the disease. [cited 2022 Oct 24]. Available from: https://unitaid.org/project/ new-treatments-and-diagnostics-to-prevent-chagas-transmissionfrom- mother-to-child/#02021.
13. Acevedo GR, Girard MC, Gomez KA. The unsolved jigsaw puzzle of the immune response in Chagas disease. Front Immunol. 2018; 9: 1929.

14. Casanova J-L, Abel L. Human genetics of infectious diseases: unique insights into immunological redundancy. Semin Immunol. 2018; 36: 1-12.

15. Alvarado-Arnez LE, Batista AM, Alves SM, Melo G, de Lorena VMB, Cardoso CC, et al. Single nucleotide polymorphisms of cytokine-related genes and association with clinical outcome in a Chagas disease case-control study from Brazil. Mem Inst Oswaldo Cruz. 2018; 113(6): 170489.

16. Batista AM, Alvarado-Arnez LE, Alves SM, Melo G, Pereira IR, Ruivo LAS, et al. Genetic polymorphism at CCL5 is associated with protection in Chagas’ heart disease: antagonistic participation of CCR1+ and CCR5+ cells in chronic chagasic cardiomyopathy. Front Immunol. 2018; 9: 615.

17. Chevillard C, Nunes JPS, Frade AF, Almeida RR, Pandey RP, Nascimento MS, et al. Disease tolerance and pathogen resistance genes may underlie Trypanosoma cruzi persistence and differential progression to Chagas disease cardiomyopathy. Front Immunol. 2018; 9: 2791.

18. Torres RM, Correia D, Nunes MCP, Dutra WO, Talvani A, Sousa AS, et al. Prognosis of chronic Chagas heart disease and other pending clinical challenges. Mem Inst Oswaldo Cruz. 2022; 117: e210172.

19. Lannes-Vieira J. Multi-therapeutic strategy targeting parasite and inflammation-related alterations to improve prognosis of chronic Chagas cardiomyopathy: a hypothesis-based approach. Mem Inst Oswaldo Cruz. 2022; 117: e220019.

20. Camargo EP, Gazzinelli RT, Morel CM, Precioso AR. Why do we still have not a vaccine against Chagas disease? Mem Inst Oswaldo Cruz. 2022; 117: e200314.

21. Urbina JA. Etiologic treatment of Chagas disease: old drugs, new insights, challenges, and perspectives. In: Pinazo Delgado MJ, Gascón J, editors. Chagas disease. Springer, Cham. 2020. https://doi. org/10.1007/978-3-030-44054-1_8.
22. Bocchi EA, Bestetti RB, Scanavacca MI, Cunha Neto E, Issa VS. Chronic Chagas heart disease management: from etiology to cardiomyopathy treatment. J Am Coll Cardiol. 2017; 70(12): 1510-24.

23. Marin-Neto JA, Rassi Jr A, Oliveira GMM, Correia LCL, Ramos Jr AN, Hasslocher-Moreno AM, et al. Diretriz da Sociedade Brasileira de Cardiologia sobre diagnóstico e tratamento de pacientes com cardiomiopatia da doença de Chagas. [Preprint/Version 1]. Scielo. 2022. https://doi.org/10.1590/SciELOPreprints.4820.
24. Pittella JEH. Central nervous system involvement in Chagas disease: a hundred-year-old history. Trans R Soc Trop Med Hyg. 2009; 103(10): 973-8.

25. de Oliveira Jr W. Depressão e qualidade de vida no paciente chagasico. Rev Soc Bras Med Trop. 2006; 39(3): 130-2.

26. Chagas C. Nova entidade morbida do homem. Rezumo geral de estudos etiolojicos e clinicos. Mem Inst Oswaldo Cruz. 1911; 3(2): 219-75.
27. Vianna G. Contribuição para o estudo da anatomia patolojica da “Molestia de Carlos Chagas” (Esquizotripanoze humana ou tireoidite parazitaria). Mem Inst Oswaldo Cruz. 1911; 3(2): 276-94.
28. Rubio M, Allende N, Roman C, Ebensperger I, Moreno L. Involvement of the central nervous system in a case of congenital Chagas’ disease. Bol Chil Parasitol. 1967; 22(3): 119-22.

29. Antunes AC, Cecchini FM, Bolli F, Oliveira PP, Reboucas RG, Monte TL, et al. Cerebral trypanosomiasis and AIDS. Arq Neuropsiquiatr. 2002; 60(3-b): 730-3.

30. França L, Lemos S, Fleury RN, Melaragno Filho R, Ramos Jr HA, Pasternak J. Moléstia de Chagas crônica associada a leucemia linfática: ocorrência de encefalite aguda como alteração do estado imunitário. Arq Neuropsiquiatr. 1969; 27: 59-66.
31. de Queiroz A, Ramos E. Anatomo-pathological study of the brain in idiopathic cardiomegaly. Arq Neuropsiquiatr. 1979; 37(4): 405-11.

32. Roffê E, Silva AA, Marino AP, dos Santos PV, Lannes-Vieira J. Essential role of VLA-4/VCAM-1 pathway in the establishment of CD8+ T-cell-mediated Trypanosoma cruzi-elicited meningoencephalitis. J Neuroimmunol. 2003; 142(1-2): 17-30.

33. Córdova E, Maiolo E, Corti M, Orduna T. Neurological manifestations of Chagas’ disease. Neurol Res. 2010; 32(3): 238-44.

34. Castillo M, Mendoza G, Oviedo J, Bianco RP, Anselmo AE, Silva M. AIDS and Chagas’ disease with central nervous system tumorlike lesion. Am J Med. 1990; 88(6): 693-4.

35. Camargos S, Moreira MCV, Portela DMMC, Lira JPI, Modesto FVS, Menezes GMM, et al. CNS chagoma: reactivation in an immunosuppressed patient. Neurology. 2017; 88(6): 605-6.

36. Perin L, Moreira da Silva R, Fonseca KS, Cardoso JMO, Mathias FAS, Reis LES, et al. Pharmacokinetics and tissue distribution of benznidazole after oral administration in mice. Antimicrob Agents Chemother. 2017; 61(4): e02410-16.

37. Chagas C. Processos patojenicos da tripanozomiase americana. Mem Inst Oswaldo Cruz. 1916; 8(2): 5-36.
38. Da Mata JR, Camargos MR, Chiari E, Machado CRS. Trypanosoma cruzi infection and the rat central nervous system: proliferation of parasites in astrocytes and the brain reaction to parasitism. Brain Res Bull. 2000; 53(2): 153-62.

39. Silva AA, Roffê E, Marino AP, dos Santos PV, Quirico-Santos T, Paiva CN, et al. Chagas’ disease encephalitis: intense CD8+ lymphocytic infiltrate is restricted to the acute phase, but is not related to the presence of Trypanosoma cruzi antigens. Clin Immunol. 1999; 92(1): 56-66.

40. Silva RR, Mariante RM, Silva AA, dos Santos ALB, Roffê E, Santiago H, et al. Interferon-gamma promotes infection of astrocytes by Trypanosoma cruzi. PLoS One. 2015; 10(2): e0118600.

41. Alencar A. Encefalopatia crônica chagásica. J Bras Neurol. 1982; 18: 7-12.
42. Oliveira-Filho J, Vieira-de-Melo RM, Reis PS, Lacerda AM, Neville IS, Cincura C, et al. Chagas disease is independently associated with brain atrophy. J Neurol. 2009; 256(8): 1363-5.

43. Jorg ME, Rovira IZ. Formas encefalopaticas de enfermedad de Chagas cronica observadas en Argentina. Mem Inst Oswaldo Cruz. 1981; 76(4): 353-60.

44. Mangone C, Sica R, Pereyra S, Genovese O, Segura E, Riarte A, et al. Cognitive impairment in human chronic Chagas’ disease. Arq Neuropsiquiatr. 1994; 52: 200-3.

45. Ozaki Y, Guariento ME, de Almeida EA. Quality of life and depressive symptoms in Chagas disease patients. Qual Life Res. 2011; 20(1): 133-8.

46. Marchi R, Gurgel CBFM. Depressão e doença de Chagas. Rev Soc Bras Clin Med. 2011; 9(5): 325-8.
47. Jackson Y, Castillo S, Hammond P, Besson M, Brawand?Bron A, Urzola D, et al. Metabolic, mental health, behavioural and socioeconomic characteristics of migrants with Chagas disease in a non?endemic country. Trop Med Int Health. 2012; 17(5): 595-603.

48. Suman AC, Costa ÉAPNd, Bazan SGZ, Hueb JC, Carvalho FC, Martin LC, et al. Evaluating respiratory musculature, quality of life, anxiety, and depression among patients with indeterminate chronic Chagas disease and symptoms of pulmonary hypertension. Rev Soc Bras Med Trop. 2017; 50: 194-8.

49. Mosovich SA, Mady C, Lopes N, Ianni B, Dias JCP, Correia D, et al. Chagas disease as a mechanistic model for testing a novel hypothesis. Rev Soc Bras Med Trop. 2008; 41: 70-2.

50. Silva WT, Ávila MR, Oliveira LFF, Figueiredo PHS, Lima VP, Bastone AC, et al. Prevalence and determinants of depressive symptoms in patients with Chagas cardiomyopathy and predominantly preserved cardiac function. Rev Soc Bras Med Trop. 2020; 53: e20200123.

51. Prost JO, Romero VH, Morikone A, Polo G, Bosch A. Evidencias de compromiso cerebral en el estadio crónico de la enfermedad de Chagas obtenidas por medio del potencial P300 y de electroencefalografía cuantificada. Arq Neuropsiquiatr. 2000; 58: 262-71.

52. Hueb MFD, Loureiro SR. Revisão: aspectos cognitivos e psicossociais associados a doença de Chagas. Psicol Estud. 2005; 10: 137-42.
53. Guimarães PM, Passos SR, Calvet GA, Hökerberg YH, Lessa JL, Andrade CA. Suicide risk and alcohol and drug abuse in outpatients with HIV infection and Chagas disease. Braz J Psychiatry. 2014; 36: 131-7.

54. Lima-Costa MF, Castro-Costa E, Uchôa E, Firmo J, Ribeiro ALP, Ferri CP, et al. A population-based study of the association between Trypanosoma cruzi infection and cognitive impairment in old age (the Bambuí Study). Neuroepidemiology. 2009; 32(2): 122-8.

55. Jörg M, Freire R, Orlando A, Bustamante A, Figueredo R, Peltier Y, et al. Disfunción cerebral mínima como secuela de meningoencefalitis aguda por Trypanosoma cruzi. Prensa Med Argent. 1972; 59: 1658-69.
56. Barrera Moncada G, Romero J, Espinoza E, Leal F. Desarrollo mental en niños con infección chagásica crónica. Arch Venez Pueric Pediatr. 1987; 50(3/4): 106-11.
57. Pereyra S, Mangone C, Segura E, Genovese O, Sica R. Rastreo cognitivo en pacientes con enfermedad de Chagas en estado crónico: estudio preliminar. Rev Neurol Argent. 1992; 17(2): 37-40.
58. Petana W. The importance of clinical, psychological and social effects experienced by patients with American trypanosomiasis (Chagas’ disease). Bol Oficina Sanit Panam. 1980; 88(3): 214-7.
59. Mota DCGA, Benevides-Pereira AMT, Gomes ML, de Araújo SM. Estresse e resiliência em doença de Chagas. Aletheia. 2006; (24): 57-68.
60. Araujo-Jorge TC, Ferreira RR, Rocha RC, Vieira TM, Costa ND, Santos LL, et al. “Chagas express XXI”: a new ArtScience social technology for health and science education - A case study in Brazilian endemic areas of Chagas disease with an active search of chronic cases. PLoS Negl Trop Dis. 2021; 15(7): e0009534.
61. Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther. 2011; 130(2): 226-38.
62. Pérez-Fuentes R, Guégan JF, Barnabé C, López-Colombo A, Salgado- Rosas H, Torres-Rasgado E, et al. Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol. 2003; 33(3): 293-9.
63. Pérez A, Silva-Barbosa S, Berbert L, Revelli S, Beloscar J, Savino W, et al. Immunoneuroendocrine alterations in patients with progressive forms of chronic Chagas disease. J Neuroimmunol. 2011; 235(1-2): 84-90.
64. Roohi E, Jaafari N, Hashemian F. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J Neuroinflammation. 2021; 18(1): 1-15.
65. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506.
66. Silverio JC, Pereira IR, Cipitelli MC, Vinagre NF, Rodrigues MM, Gazzinelli RT, et al. CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy. PLoS Pathog. 2012; 8(4): e1002645.
67. Pereira IR, Vilar-Pereira G, Silva AA, Lannes-Vieira J. Severity of chronic experimental Chagas’ heart disease parallels tumour necrosis factor and nitric oxide levels in the serum: models of mild and severe disease. Mem Inst Oswaldo Cruz. 2014; 109(3): 289-98.
68. Pereira IR, Vilar-Pereira G, Moreira OC, Ramos IP, Gibaldi D, Britto C, et al. Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response. PLoS Negl Trop Dis. 2015; 9(3): e0003659.
69. Pereira IR, Vilar-Pereira G, Silva AA, Moreira OC, Britto C, Sarmento EDM, et al. Tumor necrosis factor is a therapeutic target for immunological unbalance and cardiac abnormalities in chronic experimental Chagas’ heart disease. Mediators Inflamm. 2014; 2014: 798078.
70. Gibaldi D, Vilar-Pereira G, Pereira IR, Silva AA, Barrios LC, Ramos IP, et al. CCL3/macrophage inflammatory protein-1? is dually involved in parasite persistence and induction of a TNF-and IFN?- enriched inflammatory milieu in Trypanosoma cruzi-induced chronic cardiomyopathy. Front Immunol. 2020; 11: 306.
71. Pereira IR, Vilar-Pereira G, Marques V, da Silva AA, Caetano B, Moreira OC, et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog. 2015; 11(1): e1004594.
72. Vilar-Pereira G, Pereira IR, Ruivo LAS, Moreira OC, da Silva AA, Britto C, et al. Combination chemotherapy with suboptimal doses of benznidazole and pentoxifylline sustains partial reversion of experimental Chagas’ heart disease. Antimicrob Agents Chemother. 2016; 60(7): 4297-309.
73. Farani PSG, Begum K, Vilar-Pereira G, Pereira IR, Almeida IC, Roy S, et al. Treatment with suboptimal dose of benznidazole mitigates immune response molecular pathways in mice with chronic chagas cardiomyopathy. Front Cell Infect Microbiol. 2021; 11: 692655.
74. Silva AA, Roffê E, Santiago H, Marino AP, Kroll-Palhares K, Teixeira MM, et al. Trypanosoma cruzi-triggered meningoencephalitis is a CCR1/CCR5-independent inflammatory process. J Neuroimmunol. 2007; 184(1-2): 156-63.
75. Nisimura LM, Estato V, De Souza EM, Reis PA, Lessa MA, Castro- Faria-Neto HC, et al. Acute Chagas disease induces cerebral microvasculopathy in mice. PLoS Negl Trop Dis. 2014; 8(7): e2998.
76. Talvani A, Rocha MO, Ribeiro AL, Correa-Oliveira R, Teixeira MM. Chemokine receptor expression on the surface of peripheral blood mononuclear cells in Chagas disease. J Infect Dis. 2004; 189(2): 214-20.
77. Neves EG, Koh CC, da Silva JLP, Passos LS, Villani FN, Dos Santos JS, et al. Systemic cytokines, chemokines and growth factors reveal specific and shared immunological characteristics in infectious cardiomyopathies. Cytokine. 2021; 148: 155711.
78. Vilar-Pereira G, Barrios LC, Silva AA, Batista AM, Pereira IR, Moreira OC, et al. Memory impairment in chronic experimental Chagas disease: benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PLoS One. 2021; 16(1): e0244710.
79. Vilar-Pereira G, Silva AA, Pereira IR, Silva RR, Moreira OC, de Almeida LR, et al. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions. Brain Behav Immun. 2012; 26(7): 1136-49.
80. Vilar-Pereira G, Ruivo LAS, Lannes-Vieira J. Behavioural alterations are independent of sickness behaviour in chronic experimental Chagas disease. Mem Inst Oswaldo Cruz. 2015; 110(8): 1042-50.
81. Rogers DC, Peters J, Martin JE, Ball S, Nicholson SJ, Witherden AS, et al. SHIRPA, a protocol for behavioral assessment: validation for longitudinal study of neurological dysfunction in mice. Neurosci Lett. 2001; 306(1-2): 89-92.
82. Arankowsky-Sandoval G, Mut-Mart??n M, Sol??s-Rodr??g uez F, Góngora- Alfaro JL, Barrera-Pérez M. Sleep and memory deficits in the rat produced by experimental infection with Trypanosoma cruzi. Neurosci Lett. 2001; 306(1): 65-8.
83. Maes M, Leonard B, Myint A, Kubera M, Verkerk R. The new ‘5-HT’hypothesis of depression: cell-mediated immune activation induces indoleamine 2, 3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(3): 702-21.
84. Dantzer R, O’connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008; 9(1): 46-56.
85. Moncrieff J, Cooper RE, Stockmann T, Amendola S, Hengartner MP, Horowitz MA. The serotonin theory of depression: a systematic umbrella review of the evidence. Mol Psychiatry. 2022; 1-14.
86. Knubel CP, Martínez FF, Fretes RE, Lujan CD, Theumer MG, Cervi L, et al. Indoleamine 2, 3?dioxigenase (IDO) is critical for host resistance against Trypanosoma cruzi. FASEB J. 2010; 24(8): 2689-701.
87. Kubera M, Lin A-H, Kenis G, Bosmans E, van Bockstaele D, Maes M. Anti-inflammatory effects of antidepressants through suppression of the interferon-?/interleukin-10 production ratio. J Clin Psychopharmacol. 2001; 21(2): 199-206.
88. Koh S-J, Kim JM, Kim I-K, Kim N, Jung HC, Song IS, et al. Fluoxetine inhibits NF-?B signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol Gastrointest Liver Physiol. 2011; 301(1): G9-G19.
89. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D. Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem. 2011; 18(2): 245-55.
90. Mahmoud MF, El Shazly SM, Barakat W. Inhibition of TNF-? protects against hepatic ischemia-reperfusion injury in rats via NF- ?B dependent pathway. Naunyn Schmiedebergs Arch Pharmacol. 2012; 385(5): 465-71.
91. Uzzan S, Azab AN. Anti-TNF-? compounds as a treatment for depression. Molecules. 2021; 26(8): 2368.
92. Gibb J, Hayley S, Poulter MO, Anisman H. Effects of stressors and immune activating agents on peripheral and central cytokines in mouse strains that differ in stressor responsivity. Brain Behav Immun. 2011; 25(3): 468-82.
93. Fu X, Lawson MA, Kelley KW, Dantzer R. HIV-1 Tat activates indoleamine 2, 3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner. J Neuroinflammation. 2011; 8(1): 1-12.
94. Moreau M, André C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, et al. Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive- like behavior. Brain Behav Immun. 2008; 22(7): 1087-95.
95. Lebouvier T, Pasquier F, Buée L. Update on tauopathies. Curr Opin Neurol. 2017; 30(6): 589-98.
96. Goedert M, Jakes R, Spillantini MG. The synucleinopathies: twenty years on. J Parkinsons Dis. 2017; 7(s1): S51-69.
97. Lago N, Kaufmann FN, Negro-Demontel ML, Alí-Ruiz D, Ghisleni G, Rego N, et al. CD300f immunoreceptor is associated with major depressive disorder and decreased microglial metabolic fitness. Proc Natl Acad Sci USA. 2020; 117(12): 6651-62.
98. Carroll-Anzinger D, Al-Harthi L. Gamma interferon primes productive human immunodeficiency virus infection in astrocytes. J Virol. 2006; 80(1): 541-4.
99. Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol. 2011; 186(12): 6771-8.
100. Urquiza JM, Burgos JM, Ojeda DS, Pascuale CA, Leguizamón MS, Quarleri JF. Astrocyte apoptosis and hiv replication are modulated in host cells coinfected with Trypanosoma cruzi. Front Cell Infect Microbiol. 2017; 7: 345.
101. Pacheco AL, Vicentini G, Matteucci KC, Ribeiro RR, Weinlich R, Bortoluci KR. The impairment in the NLRP3-induced NO secretion renders astrocytes highly permissive to T. cruzi replication. J Leukoc Biol. 2019; 106(1): 201-7.
102. Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in cns innate immunity. Trends Immunol. 2020; 41(9): 758-70.
103. Silva AA, Silva RR, Gibaldi D, Mariante RM, Dos Santos JB, Pereira IR, et al. Priming astrocytes with TNF enhances their susceptibility to Trypanosoma cruzi infection and creates a self-sustaining inflammatory milieu. J Neuroinflammation. 2017; 14(1): 1-15.
104. Vargas-Zambrano JC, Lasso P, Cuellar A, Puerta CJ, González JM. A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi. Mem Inst Oswaldo Cruz. 2013; 108(2): 212-9.
105. Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648.
106. Faix JD. Biomarkers of sepsis. Crit Rev Clin Lab Sci. 2013; 50(1): 23-36.
107. Stolarski AE, Kim J, Zhang Q, Remick DG. Cytokine Drizzle - The rationale for abandoning “Cytokine Storm”. Shock. 2021; 56(5): 667-72.
108. Moubasher AD, Kamel NA, Zedan H, Raheem DD. Cytokines in leprosy, I. Serum cytokine profile in leprosy. Int J Dermatol. 1998; 37(10): 733-40.
109. Angst DBM, Pinheiro RO, Vieira JSS, Cobas RA, Hacker MAV-B, Pitta IJR, et al. Cytokine levels in neural pain in leprosy. Front Immunol. 2020; 11: 23.
110. Vaidian AK, Weiss LM, Tanowitz HB. Chagas’ disease and AIDS. Kinetoplastid Biol Dis. 2004; 3(1): 2.
111. Shikanai-Yasuda MA, Mediano MFF, Novaes CTG, Sousa AS, Sartori AMC, Santana RC, et al. Clinical profile and mortality in patients with T. cruzi/HIV co-infection from the multicenter data base of the “Network for healthcare and study of Trypanosoma cruzi/HIV co-infection and other immunosuppression conditions”. PLoS Negl Trop Dis. 2021; 15(9): e0009809.
112. Burgos JM, Begher S, Silva HM, Bisio M, Duffy T, Levin MJ, et al. Molecular identification of Trypanosoma cruzi I tropism for central nervous system in Chagas reactivation due to AIDS. Am J Trop Med Hyg. 2008; 78(2): 294-7.
113. Silva GC, Nagib PR, Chiari E, van Rooijen N, Machado CR, Camargos ER. Peripheral macrophage depletion reduces central nervous system parasitism and damage in Trypanosoma cruzi-infected suckling rats. J Neuroimmunol. 2004; 149(1-2): 50-8.
114. Caradonna K, Pereiraperrin M. Preferential brain homing following intranasal administration of Trypanosoma cruzi. Infect Immun. 2009; 77(4): 1349-56.
115. Elsheikha HM, Khan NA. Protozoa traversal of the blood-brain barrier to invade the central nervous system. FEMS Microbiol Rev. 2010; 34(4): 532-53.
116. Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez- Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC, et al. Infection mechanism of SARS-COV-2 and its implication on the nervous system. Front Immunol. 2020; 11: 621735.
117. Dantas-Pereira L, Menna-Barreto R, Lannes-Vieira J. Extracellular vesicles: potential role in remote signaling and inflammation in Trypanosoma cruzi-triggered disease. Front Cell Dev Biol. 2021; 9: 798054.
118. Dias JS, Lacerda AM, Vieira-de-Melo RM, Viana LC, Jesus PAP, Reis F, et al. Cognitive dysfunction in chronic Chagas disease cardiomyopathy. Dement Neuropsychol. 2009; 3(1): 27-33.
119. Lananna BV, Musiek ES. The wrinkling of time: aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis. 2020; 139: 104832.
120. Lambertucci F, Motiño O, Villar S, Rigalli JP, Alvarez ML, Catania VA, et al. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis. Toxicol Appl Pharmacol. 2017; 315: 12-22.
121. Oliveira-Filho J. Stroke and brain atrophy in chronic Chagas disease patients: a new theory proposition. Dement Neuropsychol. 2009; 3(1): 22-6.
122. Mendes FSNS, Mediano MFF, Silva RS, Xavier SS, do Brasil PEAA, Saraiva RM, et al. Discussing the score of cardioembolic ischemic stroke in Chagas disease. Trop Med Infect Dis. 2020; 5(2): 82.
123. Lage TAR, Tupinambás JT, Pádua LB, Ferreira MO, Ferreira AC, Teixeira AL, et al. Stroke in Chagas disease: from pathophysiology to clinical practice. Rev Soc Bras Med Trop. 2022; 55: e0575.
124. Hasslocher-Moreno AM, Saraiva RM, Sangenis LH, Xavier SS, de Sousa AS, Costa AR, et al. Benznidazole decreases the risk of chronic Chagas disease progression and cardiovascular events: a long-term follow up study. EClinicalMedicine. 2021; 31: 100694.
125. Soeiro MNC. Perspectives for a new drug candidate for Chagas disease therapy. Mem Inst Oswaldo Cruz. 2022; 117: e220004.
126. Sumien N, Cunningham JT, Davis DL, Engelland R, Fadeyibi O, Farmer GE, et al. Neurodegenerative disease: roles for sex, hormones, and oxidative stress. Endocrinology. 2021; 162(11): bqab185.
127. Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer’s disease. Mol Neurodegener. 2021; 16(1): 84.
128. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The amyloid-? pathway in Alzheimer’s disease. Mol Psychiatry. 2021; 26(10): 5481-503.
129. Ma T, Wang F, Xu S, Huang JH. Meningeal immunity: structure, function and a potential therapeutic target of neurodegenerative diseases. Brain Behav Immun. 2021; 93: 264-76.
130. de Souza-Basqueira M, Ribeiro RM, de Oliveira LC, Moreira CHV, Martins RCR, Franco DC, et al. Gut dysbiosis in Chagas disease. A possible link to the pathogenesis. Front Cell Infect Microbiol. 2020; 10: 402.
131. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019; 99(4): 1877-2013.
132. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018; 23(6): 716-24.
133. Bellabarba G, Davila DF, Torres A, Donis JH, Gonzalez JC, Figueroa O, et al. Plasma renin activity in chagasic patients with and without congestive heart failure. Int J Cardiol. 1994; 47(1): 5-11.
134. Alves SMM, Alvarado-Arnês LE, Cavalcanti M, Carrazzone CFV, Pacheco AGF, Sarteschi C, et al. Influence of angiotensinconverting enzyme insertion/deletion gene polymorphism in progression of Chagas heart disease. Rev Soc Bras Med Trop. 2020; 53: e20190488.
135. Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Ben- ‘ nett DA, Walston JD, et al. Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front Neurosci. 2020; 14: 586314.
136. Lima MM, Rocha MO, Nunes MC, Sousa L, Costa HS, Alencar MC, et al. A randomized trial of the effects of exercise training in Chagas cardiomyopathy. Eur J Heart Fail. 2010; 12(8): 866-73.
137. Pedra-Rezende Y, Barbosa JMC, Bombaça ACS, Dantas-Pereira L, Gibaldi D, Vilar-Pereira G, et al. Physical exercise promotes a reduction in cardiac fibrosis in the chronic indeterminate form of experimental Chagas disease. Front Immunol. 2021; 12: 712034.
138. Phillips C, Fahimi A. Immune and neuroprotective effects of physical activity on the brain in depression. Front Neurosci. 2018; 12: 498.
139. Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exerciseinduced benefits for alzheimer’s disease by stimulating mitophagy and improving mitochondrial function. Front Aging Neurosci. 2021; 13: 755665.

Financial support: This work was supported by grants from FAPERJ (E-26/10.190/2018, E-26/010.101070/2018, CNE-E-26/202.572/2019), CNPq (BPP 306037/2019-0), INCTV (Grants PAEF2 and PAEF3-IOC/Fiocruz).
*This report was presented as a lecture at the I Simpósio de Neuroinfecções do IOC, Oswaldo Cruz Institute, 22nd June 2022.
+ Corresponding author: lannes@ioc.fiocruz.br / joselilannes@gmail.com
ORCID https://orcid.org/0000-0002-1495-3027
Received 21 December 2022
Accepted 16 February 2023

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03d 
faperj cnpq capes