Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 118 | 2023
Perspective

Lipid droplets in Zika neuroinfection: Potential targets for intervention?

Suelen Silva Gomes Dias1,2, Tamires Cunha-Fernandes1,2, Vinicius Cardoso Soares1,2,3, Cecília JG de Almeida1,2, Patricia T Bozza1,2,+

1Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
3Universidade Federal do Rio de Janeiro, Programa de Imunologia e Inflamação, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760230044
792 views 642 downloads
ABSTRACT

Lipid droplets (LD) are evolutionarily conserved lipid-enriched organelles with a diverse array of cell- and stimulus-regulated proteins. Accumulating evidence demonstrates that intracellular pathogens exploit LD as energy sources, replication sites, and part of the mechanisms of immune evasion. Nevertheless, LD can also favor the host as part of the immune and inflammatory response to pathogens. The functions of LD in the central nervous system have gained great interest due to their presence in various cell types in the brain and for their suggested involvement in neurodevelopment and neurodegenerative diseases. Only recently have the roles of LD in neuroinfections begun to be explored. Recent findings reveal that lipid remodelling and increased LD biogenesis play important roles for Zika virus (ZIKV) replication and pathogenesis in neural cells. Moreover, blocking LD formation by targeting DGAT-1 in vivo inhibited virus replication and inflammation in the brain. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development. Here, we review the progress in understanding LD functions in the central nervous system in the context of the host response to Zika infection.

REFERENCES
01. Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics. 2021; 18(9): 809-25.
02. Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab. 2022; 33(3): 218-29.
03. Walther TC, Farese RV. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012; 81: 687-714.
04. Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: the multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol. 2019; 106(3): 563-80.
05. Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol. 2021; 220(7): e202102136.
06. Fitzner D, Bader JM, Penkert H, Bergner CG, Su M, Weil MT, et al. Cell-type- and brain-region-resolved mouse brain lipidome. Cell Rep. 2020; 32(11): 108132.
07. Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, et al. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci. 2022; 12(1): 106.
08. Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid droplets in neurodegenerative disorders. Front Neurosci. 2020; 14: 742.
09. Maya-Monteiro CM, Corrêa-da-Silva F, Hofmann SS, Hesselink MKC, la Fleur SE, Yi CX. Lipid droplets accumulate in the hypothalamus of mice and humans with and without metabolic diseases. Neuroendocrinology. 2021; 111(3): 263-72.
10. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 2015; 160(1-2): 177-90.
11. de Mattos KA, Sarno EN, Pessolani MCV, Bozza PT. Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Mem Inst Oswaldo Cruz. 2012; 107(Suppl. 1): 156-66.
12. Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004; 45(8): 1375-97.
13. Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol. 2007; 2(4): 403-22.
14. Hamilton LK, Dufresne M, Joppé SE, Petryszyn S, Aumont A, Calon F, et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal mdel of Alzheimer’s disease. Cell Stem Cell. 2015; 17(4): 397-411.
15. Fanning S, Selkoe D, Dettmer U. Parkinson’s disease: proteinopathy or lipidopathy? NPJ Parkinsons Dis. 2020; 6: 3.
16. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL. Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem. 2002; 277(8): 6344-52.
17. Khatchadourian A, Bourque SD, Richard VR, Titorenko VI, Maysinger D. Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia. Biochim Biophys Acta. 2012; 1821(4): 607-17.
18. Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci. 2020; 23(2): 194-208.
19. Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. 2011; 85(5): 205-13.
20. Abbink P, Stephenson KE, Barouch DH. Zika virus vaccines. Nat Rev Microbiol. 2018; 16(10): 594-600.
21. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990; 44: 649-88.
22. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009; 360(24): 2536-43.
23. Rothan HA, Fang S, Mahesh M, Byrareddy SN. Zika virus and the metabolism of neuronal cells. Mol Neurobiol. 2019; 56(4): 2551-7.
24. Brasil P, Pereira JP, Moreira ME, Nogueira RMR, Damasceno L, Wakimoto M, et al. Zika virus infection in pregnant women in Rio de Janeiro. N Engl J Med. 2016; 375(24): 2321-34.
25. Araujo LM, Ferreira ML, Nascimento OJ. Guillain-Barré syndrome associated with the Zika virus outbreak in Brazil. Arq Neuropsiquiatr. 2016; 74(3): 253-5.
26. Freitas DA, Souza-Santos R, Carvalho LMA, Barros WB, Neves LM, Brasil P, et al. Congenital Zika syndrome: a systematic review. PLoS One. 2020; 15(12): e0242367.
27. Vhp L, Aragão MM, Pinho RS, Hazin AN, Paciorkowski AR, de Oliveira ACP, et al. Congenital Zika virus infection: a review with emphasis on the spectrum of brain abnormalities. Curr Neurol Neurosci Rep. 2020; 20(11): 49.
28. Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016; 18(5): 587-90.
29. Barber GN. Host defense, viruses and apoptosis. Cell Death Differ. 2001; 8(2): 113-26.
30. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature. 2016; 534(7606): 267-71.
31. Li C, Xu D, Ye Q, Hong S, Jiang Y, Liu X, et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell. 2016; 19(5): 672.
32. Lin MY, Wang YL, Wu WL, Wolseley V, Tsai MT, Radic V, et al. Zika virus infects intermediate progenitor cells and post-mitotic committed neurons in human fetal brain tissues. Sci Rep. 2017; 7(1): 14883.
33. Martín-Acebes MA, Jiménez de Oya N, Saiz JC. Lipid metabolism as a source of druggable targets for antiviral discovery against Zika and other flaviviruses. Pharmaceuticals (Basel). 2019; 12(2): 97.
34. Saiz JC, Oya NJ, Blázquez AB, Escribano-Romero E, Martín- Acebes MA. Host-directed antivirals: a realistic alternative to fight Zika virus. Viruses. 2018; 10(9): 453.
35. Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CR, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009; 50(Suppl.): S9-14.
36. Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions. J Biol Chem. 2012; 287(4): 2280-7.
37. Diop F, Vial T, Ferraris P, Wichit S, Bengue M, Hamel R, et al. Zika virus infection modulates the metabolomic profile of microglial cells. PLoS One. 2018; 13(10): e0206093.
38. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007; 9(9): 1089-97.
39. Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-Lima G, Da Poian AT, et al. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. 2009; 5(10): e1000632.
40. Dias SSG, Cunha‐Fernandes T, Souza‐Moreira L, Soares VC, Lima GB, Azevedo‐Quintanilha IG, et al. Metabolic reprogramming and lipid droplets are involved in Zika virus replication in neural cells. J Neuroinammation. 2023; 20(1): 61.
41. Shang Z, Song H, Shi Y, Qi J, Gao GF. Crystal structure of the capsid protein from Zika virus. J Mol Biol. 2018; 430(7): 948-62.
42. Coyaud E, Ranadheera C, Cheng D, Gonçalves J, Dyakov BJA, Laurent EMN, et al. Global interactomics uncovers extensive organellar targeting by Zika virus. Mol Cell Proteomics. 2018; 17(11): 2242-55.
43. Martín-Acebes MA, Vázquez-Calvo Á, Saiz JC. Lipids and flaviviruses, present and future perspectives for the control of dengue, Zika, and West Nile viruses. Prog Lipid Res. 2016; 64: 123-37.
44. Hashemi HF, Goodman JM. The life cycle of lipid droplets. Curr Opin Cell Biol. 2015; 33: 119-24.
45. Melo RC, D’Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF. Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J Histochem Cytochem. 2011; 59(5): 540-56.
46. Souza-Moreira L, Soares VC, Dias SDSG, Bozza PT. Adiposederived Mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR -PPARγ signalling in macrophages. Sci Rep. 2019; 9(1): 20304.
47. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017; 1862(10 Pt B): 1260-72.
48. Roingeard P, Melo RC. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol. 2017; 19(1): doi: 10.1111/cmi.12688.
49. Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 2012; 8(1): e1002468.
50. Hyrina A, Meng F, McArthur SJ, Eivemark S, Nabi IR, Jean F. Human subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P) regulates cytoplasmic lipid droplet abundance: a potential target for indirect-acting anti-dengue virus agents. PLoS One. 2017; 12(3): e0174483.
51. DeBose-Boyd RA, Ye J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem Sci. 2018; 43(5): 358-68.
52. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002; 110(4): 489-500.
53. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997; 89(3): 331-40.
54. Liu H, Zhang L, Sun J, Chen W, Li S, Wang Q, et al. Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its K27-linked polyubiquitylation. J Virol. 2017; 91(9): e02234-16.
55. Yuan S, Chu H, Chan JF, Ye ZW, Wen L, Yan B, et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat Commun. 2019; 10(1): 120.
56. Mohamed B, Mazeaud C, Baril M, Poirier D, Sow AA, Chatel- Chaix L, et al. Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses. Sci Rep. 2020; 10(1): 4040.
57. Heaton NS, Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe. 2010; 8(5): 422-32.
58. Nasheri N, Joyce M, Rouleau Y, Yang P, Yao S, Tyrrell DL, et al. Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem Biol. 2013; 20(4): 570-82.
59. Lupberger J, Croonenborghs T, Suarez AAR, Renne NV, Jühling F, Oudot MA, et al. Combined analysis of metabolomes, proteomes, and transcriptomes of hepatitis C virus-infected cells and liver to identify pathways associated with disease development. Gastroenterology. 2019; 157(2): 537-51.e9.
60. Zhang J, Lan Y, Li MY, Lamers MM, Fusade-Boyer M, Klemm E, et al. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production. Cell Host Microbe. 2018; 23(6): 819-31.e5.
61. Monson EA, Helbig KJ. Host upregulation of lipid droplets drives antiviral responses. Cell Stress. 2021; 5(9): 143-5.
62. Faizan MI, Abdullah M, Ali S, Naqvi IH, Ahmed A, Parveen S. Zika virus-induced microcephaly and its possible molecular mechanism. Intervirology. 2016; 59(3): 152-8.
63. Liang Q, Luo Z, Zeng J, Chen W, Foo SS, Lee SA, et al. Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016; 19(5): 663-71.
64. Sahoo BR, Pattnaik A, Annamalai AS, Franco R, Pattnaik AK. Mechanistic target of rapamycin signaling activation antagonizes autophagy to facilitate Zika virus replication. J Virol. 2020; 94(22): e01575-20.
65. Monson EA, Crosse KM, Duan M, Chen W, O’Shea RD, Wakim LM, et al. Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response. Nat Commun. 2021; 12(1): 4303.

Financial support: FAPERJ, CNPq, CAPES.
SSGD and TC-F contributed equally to this work.
+ Corresponding author: pbozza@ioc.fiocruz.br / pbozza@gmail.com
ORCID https://orcid.org/ 0000-0001-8349-9529
Received 28 February 2023
Accepted 18 August 2023

HOW TO CITE
Dias SSG, Cunha-Fernandes T, Soares VC, de Almeida CJG, Bozza PT. Lipid droplets in Zika neuroinfection: Potential targets for intervention? Mem Inst Oswaldo Cruz. 2023; 118: e230044.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03h 
faperj   cnpq capes