REFERENCES
01. WHO - World Health Organization. Chagas disease (American trypanosomiasis). 2024. Available from: https://www.who.int/ health-topics/chagas-disease#tab=tab_1.
02. Dias E, Laranja FS, Miranda A, Nobrega G. Chagas’ disease: a clinical, epidemiologic, and pathologic study. Circulation. 1956; 14(6): 1035-60.
03. Rojo G, Pèlissier F, Sandoval-Rodriguez A, Bacigalupo A, García V, Pinto R, et al. Organs infected with Trypanosoma cruzi and DTU identification in the naturally infected rodent Octodon degus. Exp Parasitol. 2020; 215: 107931.
04. Barbosa Jr AA, Andrade ZA. Identificação do Trypanosoma cruzi nos tecidos extracardíacos de portadores de miocardite crônica chagásica. Rev Soc Bras Med Trop. 1984; 17: 123-6.
05. Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, et al. A Review on the immunological response against Trypanosoma cruzi. Pathogens. 2023; 12(2): 282.
06. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007; 115(9): 1109-23.
07. Nisimura LM, Estato V, de Souza EM, Reis PA, Lessa MA, Castro- Faria-Neto HC, et al. Acute Chagas disease induces cerebral microvasculopathy in mice. PLoS Negl Trop Dis. 2014; 8(7): e2998.
08. Tanowitz HB, Kaul DK, Chen B, Morris SA, Factor SM, Weiss LM, et al. Compromised microcirculation in acute murine Trypanosoma cruzi infection. J Parasitol. 1996; 82(1): 124-30.
09. Nisimura LM, Ferreira RR, Coelho LL, Souza EM, Gonzaga BM, Ferrão PM, et al. Increased angiogenesis parallels cardiac tissue remodelling in experimental acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz. 2022; 117: e220005.
10. Vellasco L, Svensjö E, Bulant CA, Blanco PJ, Nogueira F, Domont G, et al. Sheltered in stromal tissue cells, Trypanosoma cruzi orchestrates inflammatory neovascularization via activation of the mast cell chymase pathway. Pathogens. 2022; 11(2): 187.
11. Pereira SAL, Severino VO, Kohl NL, Rodrigues DB, Alves PM, Clemente-Napimoga JT, et al. Expression of cytokines and chemokines and microvasculature alterations of the tongue from patients with chronic Chagas’ disease. Parasitol Res. 2009; 105(4): 1031-9.
12. Dubin A, Kanoore Edul VS, Eguillor JFC, Ferrara G. Monitoring microcirculation: utility and barriers - A point-of-view review. Vasc Health Risk Manag. 2020; 16: 577-89.
13. Sartor P, Colaianni I, Cardinal MV, Bua J, Freilij H, Gürtler RE. Improving access to Chagas disease diagnosis and etiologic treatment in remote rural communities of the Argentine Chaco through strengthened primary health care and broad social participation. PLoS Negl Trop Dis. 2017; 11(2): e0005336.
14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015; 28(1): 1-39.e14.
15. Saraiva RM, Mediano MFF, Mendes FS, Sperandio da Silva GM, Veloso HH, Sangenis LHC, et al. Chagas heart disease: an overview of diagnosis, manifestations, treatment, and care. World J Cardiol. 2021; 13(12): 654-75.
16. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ringbased imaging modality for clinical assessment of the microcirculation. Opt Express. 2007; 15(23): 15101-14.
17. Pozo MO, Kanoore Edul VS, Ince C, Dubin A. Comparison of different methods for the calculation of the microvascular flow index. Crit Care Res Pract. 2012; 2012: 102483.
18. Dobbe JG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput. 2008; 46(7): 659-70.
19. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007; 49(1): 88-98, 98.e1-2.
20. Kanoore Edul VS, Ince C, Estenssoro E, Ferrara G, Arzani Y, Salvatori C, et al. The effects of arterial hypertension and age on the sublingual microcirculation of healthy volunteers and outpatients with cardiovascular risk factors. Microcirculation. 2015; 22(6): 485-92.
21. Gonzaga BMS, Horita SIM, Beghini DG, Gomes F, Nisimura LM, Dos Santos IB, et al. Effect of benznidazole on cerebral microcirculation during acute Trypanosoma cruzi infection in mice. Sci Rep. 2022; 12(1): 21048.
22. Ferreira CS, Lopes ER, Chapadeiro E, Almeida HO, de Souza WF, da Silva Neto IJ. Post-mortem coronary angiography in chronic Chagas carditis, Anatomo-radiologic correlation. Arq Bras Cardiol. 1980; 34(2): 81-6.
23. Guedes-da-Silva FH, Shrestha D, Salles BC, Figueiredo VP, Lopes LR, Dias L, et al. Trypanosoma cruzi antigens induce inflammatory angiogenesis in a mouse subcutaneous sponge model. Microvasc Res. 2015; 97: 130-6.
24. Penas FN, Carta D, Dmytrenko G, Mirkin GA, Modenutti CP, Cevey ÁC, et al. Treatment with a new peroxisome proliferatoractivated receptor gamma agonist, pyridinecarboxylic acid derivative, increases angiogenesis and reduces inflammatory mediators in the heart of Trypanosoma cruzi-infected mice. Front Immunol. 2017; 8: 1738.
25. Higuchi ML, Fukasawa S, De Brito T, Parzianello LC, Bellotti G, Ramires JA. Different microcirculatory and interstitial matrix patterns in idiopathic dilated cardiomyopathy and Chagas’ disease: a three dimensional confocal microscopy study. Heart. 1999; 82(3): 279-85.
26. Ferreira V, Molina MC, Schwaeble W, Lemus D, Ferreira A. Does Trypanosoma cruzi calreticulin modulate the complement system and angiogenesis? Trends Parasitol. 2005; 21(4): 169-74.
27. Beghini M, Abdalla DR, Olegario JGP, Furtado TCS, de Faria JB, Rodrigues DBR et al. Immunohistological insight into the correlation between cardiac and lingual musculature in chronic chagas disease. Res Soc Dev. 2022; 11(5): e58211528156.
28. Ntellas P, Perivoliotis K, Dadouli K, Koukoulis GK, Ioannou M. Microvessel density as a surrogate prognostic marker in patients with multiple myeloma: a meta-analysis. Acta Haematol. 2017; 138(2): 77-84.
29. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991; 324(1): 1-8.
30. Pruneri G, Ponzoni M, Ferreri AJ, Decarli N, Tresoldi M, Raggi F, et al. Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients. Br J Haematol. 2002; 118(3): 817-20.
31. Bulant CA, Blanco PJ, Müller LO, Scharfstein J, Svensjö E. Computer- aided quantification of microvascular networks: application to alterations due to pathological angiogenesis in the hamster. Microvasc Res. 2017; 112: 53-64.
32. Hilty MP, Merz TM, Hefti U, Ince C, Maggiorini M, Hefti JP. Recruitment of non-perfused sublingual capillaries increases microcirculatory oxygen extraction capacity throughout ascent to 7126 m. J Physiol. 2019; 597(10): 2623-38.
33. Dubin A, Henriquez E, Hernández G. Monitoring peripheral perfusion and microcirculation. Curr Opin Crit Care. 2018; 24(3): 173-80.
34. Borges JP, Mendes FSNS, Rangel MVDS, Lopes GO, da Silva GMS, da Silva PS, et al. Exercise training improves microvascular function in patients with Chagas heart disease: Data from the PEACH study. Microvasc Res. 2021; 134: 104106.
35. Barata Kasal DA, Britto A, Verri V, De Lorenzo A, Tibirica E. Systemic microvascular endothelial dysfunction is associated with left ventricular ejection fraction reduction in chronic Chagas disease patients. Microcirculation. 2021; 28(2): e12664.
36. Borges JP, Mendes FSNS, Lopes GO, Sousa AS, Mediano MFF, Tibiriçá E. Is endothelial microvascular function equally impaired among patients with chronic Chagas and ischemic cardiomyopathy? Int J Cardiol. 2018; 265: 35-7.
37. Uz Z, van Gulik TM, Aydemirli MD, Guerci P, Ince Y, Cuppen D, et al. Identification and quantification of human microcirculatory leukocytes using handheld video microscopes at the bedside. J Appl Physiol. 2018; 124(6): 1550-7.