REFERENCES
01. Heijnen H, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood. 1999; 94(11): 3791-9.
02. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015; 25(6): 364-72. doi: 10.1016/j.tcb.2015.01.004.
03. Mathieu M, Névo N, Jouve M, Valenzuela JI, Maurin M, Verweij FJ, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat Commun. 2021; 12: 4389. doi: 10.1038/s41467-021-24384-2.
04. Cruz Camacho A, Alfandari D, Kozela E, Regev-Rudzki N. Biogenesis of extracellular vesicles in protozoan parasites: the ESCRT complex in the trafficking fast lane? PLoS Pathog. 2023; 19(2): e1011140. doi: 10.1371/journal.ppat.1011140.
05. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016; 36(3): 301-12. doi: 10.1007/ s10571-016-0366-z.
06. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001; 166: 7309-18. doi: 10.4049/jimmunol. 166.12.7309.
07. Palmisano G, Jensen SS, Le Bihan MC, Lainé J, McGuire JN, Pociot F, et al. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Mol Cell Proteomics. 2012; 11(8): 230-43. doi: 10.1074/mcp.M111.012732.
08. Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024; 13: e12404. doi: 10.1002/jev2.12404.
09. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019; 8: 727. doi: 10.3390/cells8070727.
10. Chulpanova DS, Kitaeva KV, James V, Rizvanov AA, Solovyeva VV. Therapeutic prospects of extracellular vesicles in cancer treatment. Front Immunol. 2018; 9: 1534. doi: 10.3389/fimmu.2018.01534.
11. Kok VC, Yu CC. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomedicine. 2020; 15: 8019-36. doi: 10.2147/IJN.S272378.
12. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016; 126(4): 1208-15. doi: 10.1172/JCI81135.
13. Kodam SP, Ullah M. Diagnostic and therapeutic potential of extracellular vesicles. Technol Cancer Res Treat. 2021; 20: 1-10. doi: 10.1177/15330338211041203.
14. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep. 2015; 16(1): 24-43. doi: 10.15252/embr.201439363.
15. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013; 200(4): 373-83. doi: 10.1083/jcb.201211138.
16. Bielska E, May RC. Extracellular vesicles of human pathogenic fungi. Curr Opin Microbiol. 2019; 52: 90-9. doi: 10.1016/j. mib.2019.05.007.
17. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015; 40: 97- 104. doi: 10.1016/j.semcdb.2015.02.006.
18. Urbanelli L, Buratta S, Tancini B, Sagini K, Delo F, Porcellati S, et al. The role of extracellular vesicles in viral infection and transmission. Vaccines. 2019; 7: 102. doi: 10.3390/vaccines7030102.
19. Carrera-Bravo C, Koh EY, Tan KSW. The roles of parasite-derived extracellular vesicles in disease and host-parasite communication. Parasitol Int. 2021; 83: 102373. doi: 10.1016/j.parint.2021.102373.
20. Ofir-Birin Y, Heidenreich M, Regev-Rudzki N. Pathogen-derived extracellular vesicles coordinate social behaviour and host manipulation. Semin Cell Dev Biol. 2017; 67: 83-90. doi: 10.1016/j. semcdb.2017.03.004.
21. Duncan L, Yoshioka M, Chandad F, Grenier D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophagelike cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog. 2004; 36: 319-25. doi: 10.1016/j.micpath. 2004.02.004.
22. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 2007; 110(9): 3234-44. doi: 10.1182/blood-2007-03-079152.
23. Bayer-Santos E, Lima FM, Ruiz JC, Almeida IC, Da Silveira JF. Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles. Mol Biochem Parasitol. 2014; 193(2): 71-4. doi: 10.1016/j.molbiopara.2014.02.004.
24. Cipriano MJ, Hajduk SL. Drivers of persistent infection: pathogen- induced extracellular vesicles. Essays Biochem. 2018; 62: 135-47. doi: 10.1042/EBC20170083.
25. Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, et al. Extracellular vesicles in parasitic diseases. J Extracell Vesicles. 2014; 3: 25040. doi: 10.3402/jev.v3.25040.
26. Arenaccio C, Anticoli S, Manfredi F, Chiozzini C, Olivetta E, Federico M. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology. 2015; 12: 87. doi: 10.1186/s12977-015-0216-y.
27. Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson P, Cihak J, et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med. 2000; 6(7): 769-75.
28. Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. Infect Genet Evol. 2020; 85: 104422. doi: 10.1016/j.meegid.2020.104422.
29. Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from Hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014; 10(10): e1004424. doi: 10.1371/journal.ppat.1004424.
30. Longatti A, Boyd B, Chisari FV. Virion-independent transfer of replication-competent Hepatitis C virus RNA between permissive cells. J Virol. 2015; 89(5): 2956-61. doi: 10.1128/jvi.02721-14.
31. Kim YS, Choi EJ, Lee WH, Choi SJ, Roh TY, Park J, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses. Clin Exp Allergy. 2013; 43: 443-54. doi: 10.1111/cea.12085.
32. Yang D, Chen X, Wang J, Lou Q, Lou Y, Li L, et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity. 2019; 50(3): 692-706. doi: 10.1016/j.immuni. 2019.02.001.
33. Briaud P, Carroll RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect Immun. 2020; 8(12): e00433-20. doi: 10.1128/IAI.00433-20.
34. Kulp AJ, Sun B, Ai T, Manning AJ, Orench-Rivera N, Schmid AK, et al. Genome-wide assessment of outer membrane vesicle production in Escherichia coli. PLoS One. 2015; 10(9): e0139200. doi: 10.1371/journal.pone.0139200.
35. Nevermann J, Silva A, Otero C, Oyarzún DP, Barrera B, Gil F, et al. Identification of genes involved in biogenesis of outer membrane vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front Microbiol. 2019; 10: 104. doi: 10.3389/fmicb.2019.00104.
36. Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun. 2016; 7: 10515. doi: 10.1038/ncomms10515.
37. Schlatterer K, Beck C, Hanzelmann D, Lebtig M, Fehrenbacher B, Schaller M, et al. The mechanism behind bacterial lipoprotein release: Phenol-soluble modulins mediate toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus. mBio. 2018; 9(6): e01851-18. doi: 10.1128/mbio.01851-18.
38. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun. 2016; 7: 11220. doi: 10.1038/ncomms11220.
39. Wang X, Thompson CD, Weidenmaier C, Lee JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun. 2018; 9: 1379. doi: 10.1038/ s41467-018-03847-z.
40. Schaar V, De Vries SPW, Perez Vidakovics MLA, Bootsma HJ, Larsson L, Hermans PWM, et al. Multicomponent Moraxella catarrhalis outer membrane vesicles induce an inflammatory response and are internalized by human epithelial cells. Cell Microbiol. 2011; 13(3): 432-49. doi: 10.1111/j.1462-5822.2010.01546.x.
41. Van Bergenhenegouwen J, Kraneveld AD, Rutten L, Kettelarij N, Garssen J, Vos AP. Extracellular vesicles modulate host-microbe responses by altering TLR2 activity and phagocytosis. PLoS One. 2014; 9(2): e89121. doi: 10.1371/journal.pone.0089121.
42. Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N. Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother. 2000; 45: 9-13.
43. Rivera J, Cordero RJB, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci USA. 2010; 107(44): 19002-7. doi: 10.1073/pnas.1008843107.
44. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase-11 activation. Cell. 2016; 165: 1106- 19. doi: 10.1016/j.cell.2016.04.015.
45. Ñahui Palomino RA, Vanpouille C, Costantini PE, Margolis L. Microbiota-host communications: bacterial extracellular vesicles as a common language. PLoS Pathog. 2021; 17(5): e1009508. doi: 10.1371/journal.ppat.1009508.
46. Artuyants A, Campos TL, Rai AK, Johnson PJ, Dauros-Singorenko P, Phillips A, et al. Extracellular vesicles produced by the protozoan parasite Trichomonas vaginalis contain a preferential cargo of tRNA-derived small RNAs. Int J Parasitol. 2020; 50: 1145-55. doi: 10.1016/j.ijpara.2020.07.003.
47. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015; 13(10): 620-30. doi: 10.1038/nrmicro3480.
48. Lieberman LA. Outer membrane vesicles: a bacterial-derived vaccination system. Front Microbiol. 2022; 13: 1029146. doi: 10.3389/ fmicb.2022.1029146.
49. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007; 6(1): 48-59. doi: 10.1128/EC.00318-06.
50. Ikeda MAK, De Almeida JRF, Jannuzzi GP, Cronemberger- Andrade A, Torrecilhas ACT, Moretti NS, et al. Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental sporotrichosis. Front Microbiol. 2018; 9: 2286. doi: 10.3389/ fmicb.2018.02286.
51. Liebana-Jordan M, Brotons B, Falcon-Perez JM, Gonzalez E. Extracellular vesicles in the fungi kingdom. Int J Mol Sci. 2021; 22: 7221. doi: 10.3390/ijms22137221.
52. Rizzo J, Chaze T, Miranda K, Roberson RW, Gorgette O, Nimrichter L, et al. Characterization of extracellular vesicles produced by Aspergillus fumigatus protoplasts. mSphere. 2020; 5(4): e00476- 20. doi: 10.1128/msphere.00476-20.
53. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancope-Oliveira RM, et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol. 2008; 10(8): 1695-710. doi: 10.1111/j.1462-5822.2008.01160.x.
54. Piffer AC, Kuczera D, Rodrigues ML, Nimrichter L. The paradoxical and still obscure properties of fungal extracellular vesicles. Mol Immunol. 2021; 135: 137-46. doi: 10.1016/j.molimm. 2021.04.009.
55. Evans-Osses I, Reichembach LH, Ramirez MI. Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol Res. 2015; 114: 3567-75. doi: 10.1007/s00436-015-4659-9.
56. Barteneva NS, Maltsev N, Vorobjev IA. Microvesicles and intercellular communication in the context of parasitism. Front Cell Infect Microbiol. 2013; 3: 49. doi: 10.3389/fcimb.2013.00049.
57. Eliaz D, Kannan S, Shaked H, Arvatz G, Tkacz ID, Binder L, et al. Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog. 2017; 13(3): e1006245. doi: 10.1371/journal. ppat.1006245.
58. Sharma M, Lozano-Amado D, Chowdhury D, Singh U. Extracellular Vesicles and Their impact on the biology of protozoan parasites. Trop Med Infect Dis. 2023: 8: 448. doi: 10.3390/tropicalmed8090448.
59. Nawaz M, Malik MI, Hameed M, Zhou J. Research progress on the composition and function of parasite-derived exosomes. Acta Trop. 2019; 196: 30-6. doi: 10.1016/j.actatropica.2019.05.004.
60. Wang Y, Yuan W, Kimber M, Lu M, Dong L. Rapid differentiation of host and parasitic exosome vesicles using microfluidic photonic crystal biosensor. ACS Sens. 2018; 3: 1616-21. doi: 10.1021/ acssensors.8b00360.
61. Kifle DW, Chaiyadet S, Waardenberg AJ, Wise I, Cooper M, Becker L, et al. Uptake of Schistosoma mansoni extracellular vesicles by human endothelial and monocytic cell lines and impact on vascular endothelial cell gene expression. Int J Parasitol. 2020; 50: 685-96. doi: 10.1016/j.ijpara.2020.05.005.
62. Chaiyadet S, Sotillo J, Krueajampa W, Thongsen S, Smout M, Brindley PJ, et al. Silencing of Opisthorchis viverrini tetraspanin gene expression results in reduced secretion of extracellular vesicles. Front Cell Infect Microbiol. 2022; 12: 827521. doi: 10.3389/ fcimb.2022.827521.
63. Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular vesiclemediated communication within host-parasite interactions. Front Immunol. 2019; 9: 3066. doi: 10.3389/fimmu.2018.03066.
64. Sultana H, Neelakanta G. Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases. Curr Opin Insect Sci. 2020; 40: 39-47. doi: 10.1016/j.cois.2020.05.017.
65. Hackenberg M, Kotsyfakis M. Exosome-mediated pathogen transmission by arthropod vectors. Trends Parasitol. 2018; 34(7): 549-52. doi: 10.1016/j.pt.2018.04.001.
66. Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 2018; 14(1): e1006764. doi: 10.1371/journal.ppat.1006764.
67. Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, Colpitts TM, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci USA. 2018; 115(28): E6604-13. doi: 10.1073/pnas.1720125115.
68. Reyes-Ruiz JM, Osuna-Ramos JF, De Jesús-González LA, Hurtado- Monzón AM, Farfan-Morales CN, Cervantes-Salazar M, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019; 266: 1-14. doi: 10.1016/j.virusres.2019.03.015.
69. Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEMC, et al. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun. 2021; 12: 3696. doi: 10.1038/s41467-021-23900-8.
70. Butler LR, Gonzalez J, Pedra JHF, Chavez ASO. Tick extracellular vesicles in host skin immunity and pathogen transmission. Trends Parasitol. 2023; 39(10): 873-85. doi: 10.1016/j.pt.2023.07.009.
71. Loghry HJ, Kwon H, Smith RC, Sondjaja NA, Minkler SJ, Young S, et al. Extracellular vesicles secreted by Brugia malayi microfilariae modulate the melanization pathway in the mosquito host. Sci Rep. 2023; 13: 8778. doi: 10.1038/s41598-023-35940-9.
72. Yang T, Xu Z, Yu J, Liu J, Wang W, Hong S. Exosomes derived from Dermatophagoides farinae induce allergic airway inflammation. Microbiol Spectr. 2023; 11(4): 1-19. doi: 10.1128/spectrum. 05054-22.
73. Duque-Correa MA, Schreiber F, Rodgers FH, Goulding D, Forrest S, White R, et al. Development of caecaloids to study host–pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum. Int J Parasitol. 2020; 50: 707-18. doi: 10.1016/j.ijpara.2020.06.001.
74. Harischandra H, Yuan W, Loghry HJ, Zamanian M, Kimber MJ. Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Negl Trop Dis. 2018; 12(4): e0006438. doi: 10.1371/journal.pntd.0006438.
75. de la Torre-Escudero E, Gerlach JQ, Bennett APS, Cwiklinski K, Jewhurst HL, Huson KM, et al. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl Trop Dis. 2019; 13(1): e0007087. doi: 10.1371/journal.pntd.0007087.
76. Di Maggio LS, Fischer K, Yates D, Curtis KC, Rosa BA, Martin J, et al. The proteome of extracellular vesicles of the lung fluke Paragonimus kellicotti produced in vitro and in the lung cyst. Sci Rep. 2023; 13: 13726. doi: 10.1038/s41598-023-39966-x.
77. Liu C, Cao J, Zhang H, Field MC, Yin J. Extracellular vesicles secreted by Echinococcus multilocularis: important players in angiogenesis promotion. Microbes Infect. 2023; 25: 105147. doi: 10.1016/j.micinf.2023.105147.
78. Kosanović M, Cvetković J, Gruden-Movsesijan A, Vasilev S, Svetlana M, Ilić N, et al. Trichinella spiralis muscle larvae release extracellular vesicles with immunomodulatory properties. Parasite Immunol. 2019; 41: e12665. doi: 10.1111/pim.12665.
79. Murphy A, Cwiklinski K, Lalor R, O’connell B, Robinson MW, Gerlach J, et al. Fasciola hepatica extracellular vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Negl Trop Dis. 2020; 14(9): e0008626. doi: 10.1371/journal.pntd.0008626.
80. Sánchez-López CM, González-Arce A, Soler C, Ramírez-Toledo V, Trelis M, Bernal D, et al. Extracellular vesicles from the trematodes Fasciola hepatica and Dicrocoelium dendriticum trigger different responses in human THP-1 macrophages. J Extracell Vesicles. 2023; 12(4): e12317. doi: 10.1002/jev2.12317.
81. Ricciardi A, Bennuru S, Tariq S, Kaur S, Wu W, Elkahloun AG, et al. Extracellular vesicles released from the filarial parasite Brugia malayi downregulate the host mTOR pathway. PLoS Negl Trop Dis. 2021; 15(1): e0008884. doi: 10.1371/journal.pntd.0008884.
82. Meningher T, Lerman G, Regev-Rudzki N, Gold D, Ben-Dov IZ, Sidi Y, et al. Schistosomal microRNAs isolated from extracellular vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human schistosomiasis. J Infect Dis. 2017; 215: 378- 86. doi: 10.1093/infdis/jiw539.
83. Eichenberger RM, Talukder MH, Field MA, Wangchuk P, Giacomin P, Loukas A, et al. Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host–parasite communication. J Extracell Vesicles. 2018; 7: 1428004. doi: 10.1080/20013078.2018.1428004.
84. Eichenberger RM, Ryan S, Jones L, Buitrago G, Polster R, de Oca MM, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front Immunol. 2018; 9: 850. doi: 10.3389/fimmu.2018.00850.
85. Hansen EP, Fromm B, Andersen SD, Marcilla A, Andersen KL, Borup A, et al. Exploration of extracellular vesicles from Ascaris suum provides evidence of parasite-host cross talk. J Extracell Vesicles. 2019; 8: 1578116. doi: 10.1080/20013078.2019.1578116.
86. Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol. 2020; 50: 623-33. doi: 10.1016/j.ijpara.2020.04.011.
87. Sheng ZA, Wu CL, Wang DY, Zhong SH, Yang X, Rao GS, et al. Proteomic analysis of exosome-like vesicles from Fasciola gigantica adult worm provides support for new vaccine targets against fascioliasis. Parasit Vectors. 2023; 16: 62. doi: 10.1186/ s13071-023-05659-7.
88. Gonzáles WHR, Coelho GR, Pimenta DC, de Paula FM, Gryschek RCB. Proteomic analysis of the excretory-secretory products from Strongyloides venezuelensis infective larvae: new insights for the immunodiagnosis of human strongyloidiasis. Parasitol Res. 2022; 121(11): 3155-70. doi: 10.1007/s00436-022-07636-y.
89. Li C, Li C, Xu F, Wang H, Jin X, Zhang Y, et al. Identification of antigens in the Trichinella spiralis extracellular vesicles for serological detection of early stage infection in swine. Parasit Vectors. 2023; 16: 387. doi: 10.1186/s13071-023-06013-7.
90. Babatunde KA, Subramanian BY, Ahouidi AD, Murillo PM, Walch M, Mantel PY. Role of extracellular vesicles in cellular cross talk in malaria. Front Immunol. 2020; 11: 22. doi: 10.3389/ fimmu.2020.00022.
91. Varikuti S, Jha BK, Holcomb EA, McDaniel JC, Karpurapu M, Srivastava N, et al. The role of vascular endothelium and exosomes in human protozoan parasitic diseases. Vessel Plus. 2020; 4: 28. doi: 10.20517/2574-1209.2020.27.
92. de Souza W, Barrias ES. Membrane-bound extracellular vesicles secreted by parasitic protozoa: cellular structures involved in the communication between cells. Parasitol Res. 2020; 119: 2005-23. doi: 10.1007/s00436-020-06691-7.
93. Kato K, Sugi T, Iwanaga T. Roles of Apicomplexan protein kinases at each life cycle stage. Parasitol Int. 2012; 61: 224-34. doi: 10.1016/j.parint.2011.12.002.
94. Rossi IV, Nunes MAF, Vargas-Otalora S, Ferreira TCS, Cortez M, Ramirez MI. Extracellular vesicles during TriTryps infection: complexity and future challenges. Mol Immunol. 2021; 132: 172- 83. doi: 10.1016/j.molimm.2021.01.008.
95. Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, et al. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res. 2017; 2: 50. doi: 10.12688/wellcomeopenres. 11910.1.
96. Vimonpatranon S, Roytrakul S, Phaonakrop N, Lekmanee K, Atipimonpat A, Srimark N, et al. Extracellular vesicles derived from early and late stage Plasmodium falciparum-infected red blood cells contain invasion-associated proteins. J Clin Med. 2022; 11: 4250. doi: 10.3390/jcm11144250.
97. Li Y, Xiu F, Mou Z, Xue Z, Du H, Zhou C, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway. Nanomedicine. 2018; 13(10): 1157-68. doi: 10.2217/nnm-2018-0035.
98. Quiarim TM, Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Pereira-Chioccola VL. Characterization of extracellular vesicles isolated from types I, II and III strains of Toxoplasma gondii. Acta Trop. 2021; 219: 105915. doi: 10.1016/j.actatropica. 2021.105915.
99. Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, Oliveira KC, et al. Extracellular vesicles isolated from Toxoplasma gondii induce host immune response. Parasite Immunol. 2018; 40(9): e12571. doi: 10.1111/pim.12571.
100. Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales- Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol. 2023; 158: 103957. doi: 10.1016/j. jri.2023.103957.
101. Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Gava R, Gomes AHS, et al. Immunization with extracellular vesicles excreted by Toxoplasma gondii confers protection in murine infection, activating cellular and humoral responses. Int J Parasitol. 2021; 51: 559-69. doi: 10.1016/j.ijpara.2020.11.010.
102. Paranaiba LF, Guarneri AA, Torrecilhas AC, Melo MN, Soares RP. Extracellular vesicles isolated from Trypanosoma cruzi affect early parasite migration in the gut of Rhodnius prolixus but not in Triatoma infestans. Mem Inst Oswaldo Cruz. 2019; 114: e190217. doi: 10.1590/0074-02760190217.
103. Atayde VD, Aslan H, Townsend S, Hassani K, Kamhawi S, Olivier M. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep. 2015; 13(5): 957-67. doi: 10.1016/j.celrep.2015.09.058.
104. Serafim TD, Coutinho-Abreu IV, Dey R, Kissinger R, Valenzuela JG, Oliveira F, et al. Leishmaniasis: the act of transmission. Trends Parasitol. 2021; 37(11): 976-87. doi: 10.1016/j.pt.2021.07.003.
105. Barbosa FMC, Dupin TV, Toledo MS, Reis NFC, Ribeiro K, Cronemberger-Andrade A, et al. Extracellular vesicles released by Leishmania (Leishmania) amazonensis promote disease progression and induce the production of different cytokines in macrophages and B-1 Cells. Front Microbiol. 2018; 9: 3056. doi: 10.3389/ fmicb.2018.03056.
106. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol. 2010; 185: 5011-22. doi: 10.4049/jimmunol.1000541.
107. Dong G, Wagner V, Minguez-Menendez A, Fernandez-Prada C, Olivier M. Extracellular vesicles and leishmaniasis: current knowledge and promising avenues for future development. Mol Immunol. 2021; 135: 73-83. doi: 10.1016/j.molimm.2021.04.003.
108. Hassani K, Shio MT, Martel C, Faubert D, Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One. 2014; 9(4): e95007. doi: 10.1371/journal. pone.0095007.
109. Lambertz U, Ovando MEO, Vasconcelos EJR, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics. 2015; 16: 151. doi: 10.1186/s12864-015-1260-7.
110. Ramirez MI, Deolindo P, de Messias-Reason IJ, Arigi EA, Choi H, Almeida IC, et al. Dynamic flux of microvesicles modulate parasite–host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol. 2017; 19: e12672. doi: 10.1111/cmi.12672.
111. Moreira LR, Serrano FR, Osuna A. Extracellular vesicles of Trypanosoma cruzi tissue-culture cell-derived trypomastigotes: induction of physiological changes in non-parasitized culture cells. PLoS Negl Trop Dis. 2019; 13(2): e0007163. doi: 10.1371/journal. pntd.0007163.
112. Torrecilhas ACT, Tonelli RR, Pavanelli WR, da Silva JS, Schumacher RI, de Souza W, et al. Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect. 2009; 11: 29-39. doi: 10.1016/j. micinf.2008.10.003.
113. Lozano IMD, De Pablos LM, Longhi SA, Zago MP, Schijman AG, Osuna A. Immune complexes in chronic Chagas disease patients are formed by exovesicles from Trypanosoma cruzi carrying the conserved MASP N-terminal region. Sci Rep. 2017; 7: 44451. doi: 10.1038/srep44451.
114. Choudhuri S, Garg NJ. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020; 16(4): e1008474. doi: 10.1371/journal. ppat.1008474.
115. Moreira LR, Prescilla-Ledezma A, Cornet-Gomez A, Linares F, Jódar-Reyes AB, Fernandez J, et al. Biophysical and biochemical comparison of extracellular vesicles produced by infective and non-infective stages of Trypanosoma cruzi. Int J Mol Sci. 2021; 22: 5183. doi: 10.3390/ijms22105183.
116. Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular vesicles in Trypanosomatids: host cell communication. Front Cell Infect Microbiol. 2020; 10: 602502. doi: 10.3389/fcimb.2020.602502.
117. Douanne N, Dong G, Amin A, Bernardo L, Blanchette M, Langlais D, et al. Leishmania parasites exchange drug-resistance genes through extracellular vesicles. Cell Rep. 2022; 40: 111121. doi: 10.1016/j.celrep.2022.111121.
118. Rossi IV, Nunes MAF, Sabatke B, Ribas HT, Winnischofer SMB, Ramos ASP, et al. An induced population of Trypanosoma cruzi epimastigotes more resistant to complement lysis promotes a phenotype with greater differentiation, invasiveness, and release of extracellular vesicles. Front Cell Infect Microbiol. 2022; 12: 1046681. doi: 10.3389/fcimb.2022.1046681.
119. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell. 2016; 164(0): 246-57. doi: 10.1016/j.cell.2015.11.051.
120. Dias-Guerreiro T, Palma-Marques J, Mourata-Gonçalves P, Alexandre- Pires G, Valério-Bolas A, Gabriel A, et al. African trypanosomiasis: extracellular vesicles shed by Trypanosoma brucei brucei manipulate host mononuclear cells. Biomedicines. 2021; 9: 1056. doi: 10.3390/biomedicines9081056.
121. Fernandez-Becerra C, Xander P, Alfandari D, Dong G, Aparici- Herraiz I, Rosenhek-Goldian I, et al. Guidelines for the purification and characterization of extracellular vesicles of parasites. J Extracell Biol. 2023; 2: e117. doi: 10.1002/jex2.117.
122. Buret AG. Pathophysiology of enteric infections with Giardia duodenalis. Parasite. 2008; 15: 261-5. doi: 10.1051/parasite/ 2008153261.
123. Lanfredi-Rangel A, Attias M, Reiner DS, Gillin FD, De Souza W. Fine structure of the biogenesis of Giardia lamblia encystation secretory vesicles. J Struct Biol. 2003; 143: 153-63. doi: 10.1016/ S1047-8477(03)00123-0.
124. Benchimol M. The release of secretory vesicle in encysting Giardia lamblia. FEMS Microbiol Lett. 2004; 235: 81-7. doi: 10.1016/j. femsle.2004.04.014.
125. Ma’ayeh SY, Liu J, Peirasmaki D, Hörnaeus K, Lind SB, Grabherr M, et al. Characterization of the Giardia intestinalis secretome during interaction with human intestinal epithelial cells: the impact on host cells. PLoS Negl Trop Dis. 2017; 11(12): e0006120. doi: 10.1371/journal.pntd.0006120.
126. Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, et al. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol. 2017; 96: 131-42. doi: 10.1016/j.ejcb.2017.01.005.
127. Sana A, Rossi IV, Sabatke B, Bonato LB, Medeiros LCS, Ramirez MI. An improved method to enrich large extracellular vesicles derived from Giardia intestinalis through differential centrifugation. Life. 2023; 13: 1799. doi: 10.3390/life13091799.
128. Faria CP, Ferreira B, Lourenço A, Guerra I, Melo T, Domingues P, et al. Lipidome of extracellular vesicles from Giardia lamblia. PLoS One. 2023; 18(9): e0291292. doi: 10.1371/journal. pone.0291292.
129. Siddiq A, Allain T, Dong G, Olivier M, Buret A. Giardia extracellular vesicles disrupt intestinal epithelial and inhibit the growth of commensal bacterial while increasing their swimming motility. FASEB J. 2020; 34(S1): 1-1. doi: 10.1096/fasebj.2020.34.s1.00515.
130. Zhao P, Cao L, Wang X, Dong J, Zhang N, Li X, et al. Extracellular vesicles secreted by Giardia duodenalis regulate host cell innate immunity via TLR2 and NLRP3 inflammasome signaling pathways. PLoS Negl Trop Dis. 2021; 15(4): e0009304. doi: 10.1371/journal.pntd.0009304.
131. Gavinho B, Sabatke B, Feijoli V, Rossi IV, da Silva JM, Evans- Osses I, et al. Peptidyl arginine deiminase inhibition abolishes the production of large extracellular vesicles from Giardia intestinalis, affecting host-pathogen interactions by hindering adhesion to host cells. Front Cell Infect Microbiol. 2020; 10: 417. doi: 10.3389/ fcimb.2020.00417.
132. Ferreira B, Lourenço A, Sousa MC. Protozoa-derived extracellular vesicles on intercellular communication with special emphasis on Giardia lamblia. Microorganisms. 2022; 10: 2422. doi: 10.3390/microorganisms10122422.
133. Saha N, Dutta S, Datta SP, Sarkar S. The minimal ESCRT machinery of Giardia lamblia has altered inter-subunit interactions within the ESCRT-II and ESCRT-III complexes. Eur J Cell Biol. 2018; 97: 44-62. doi: 10.1016/j.ejcb.2017.11.004.
134. Midlej V, de Souza W, Benchimol M. The peripheral vesicles gather multivesicular bodies with different behavior during the Giardia intestinalis life cycle. J Struct Biol. 2019; 207: 301-11. doi: 10.1016/j.jsb.2019.07.002.
135. Moyano S, Musso J, Feliziani C, Zamponi N, Frontera LS, Ropolo AS, et al. Exosome biogenesis in the protozoa parasite Giardia lamblia: a model of reduced interorganellar crosstalk. Cells. 2019; 8: 1600. doi: 10.3390/cells8121600.
136. Zhao P, Cao L, Wang X, Li J, Dong J, Zhang N, et al. Giardia duodenalis extracellular vesicles regulate the proinflammatory immune response in mouse macrophages in vitro via the MAPK, AKT and NF-κB pathways. Parasit Vectors. 2021; 14: 358. doi: 10.1186/s13071-021-04865-5.
137. Siddiq A, Dong G, Balan B, Harrison LG, Jex A, Olivier M, et al. A thermo‐resistant and RNase‐sensitive cargo from Giardia duodenalis extracellular vesicles modifies the behaviour of enterobacteria. J Extracell Biol. 2023; 2: e109. doi: 10.1002/jex2.109.
138. Siddiq A, Allain T, Dong G, Olivier M, Buret A. Role of extracellular vesicles in Giardia-microbiota interactions. J Can Assoc Gastroenterol. 2021; 4(S1): 226-8. doi: 10.1093/jcag/gwab002.200.
139. Poole DN, McClelland RS. Global epidemiology of Trichomonas vaginalis. Sex Transm Infect. 2013; 89(6): 418-22. doi: 10.1136/ sextrans-2013-051075.
140. Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA, Wohlschlegel JA, et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host: parasite interactions. PLoS Pathog. 2013; 9(7): e1003482. doi: 10.1371/journal.ppat.1003482.
141. Nievas YR, Coceres VM, Midlej V, de Souza W, Benchimol M, Pereira-Neves A, et al. Membrane-shed vesicles from the parasite Trichomonas vaginalis: characterization and their association with cell interaction. Cell Mol Life Sci. 2018; 75: 2211-26. doi: 10.1007/s00018-017-2726-3.
142. Ong SC, Cheng WH, Ku FM, Tsai CY, Huang PJ, Lee CC, et al. Identification of endosymbiotic virus in small extracellular vesicles derived from Trichomonas vaginalis. Genes. 2022; 13: 531. doi: 10.3390/genes13030531.
143. Salas N, Coceres VM, Melo TS, Pereira-Neves A, Maguire VG, Rodriguez TM, et al. VPS32, a member of the ESCRT complex, modulates adherence to host cells in the parasite Trichomonas vaginalis by affecting biogenesis and cargo sorting of released extracellular vesicles. Cell Mol Life Sci. 2022; 79: 11. doi: 10.1007/ s00018-021-04083-3.
144. Rada P, Hrdý I, Zdrha A, Narayanasamy RK, Smutná T, Horáčková J, et al. Double-stranded RNA viruses are released from Trichomonas vaginalis inside small extracellular vesicles and modulate the exosomal cargo. Front Microbiol. 2022; 13: 893692. doi: 10.3389/fmicb.2022.893692.
145. Salas N, Pedreros MB, Melo TS, Maguire VG, Sha J, Wohlschlegel JA, et al. Role of cytoneme structures and extracellular vesicles in Trichomonas vaginalis parasite: parasite communication. Elife. 2023; 12. doi: 10.7554/eLife.86067.
146. Rai AK, Johnson PJ. Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proc Natl Acad Sci USA. 2019; 116(43): 21354-60. doi: 10.1073/pnas.1912356116.
147. Molgora BM, Mukherjee SK, Baumel-Alterzon S, Santiago FM, Muratore KA, Sisk AE, et al. Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis. PLoS Negl Trop Dis. 2023; 17(10): e00011693. doi: 10.1371/journal.pntd.0011693.
148. Olmos-Ortiz LM, Barajas-Mendiola MA, Barrios-Rodiles M, Castellano LE, Arias-Negrete S, Avila EE, et al. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice. Parasite Immunol. 2017; 39(6): e12426. doi: 10.1111/pim.12426.
149. Tatischeff I, Bomsel M, De Paillerets C, Durand H, Geny B, Segretain D, et al. Dictyostelium discoideum cells shed vesicles with associated DNA and vital stain Hoechst 33342. Cell Mol Life Sci. 1998; 54: 476-87.
150. Tatischeff I. Dictyostelium: a model for studying the extracellular vesicle messengers involved in human health and disease. Cells. 2019; 8: 225. doi: 10.3390/cells8030225.
151. Dey R, Folkins MA, Ashbolt NJ. Extracellular amoebal-vesicles: potential transmission vehicles for respiratory viruses. NPJ Biofilms Microbiomes. 2021; 7: 25. doi: 10.1038/s41522-021-00201-y.
152. Ashbolt NJ. Conceptual model to inform Legionella-amoebae control, including the roles of extracellular vesicles in engineered water system infections. Front Cell Infect Microbiol. 2023; 13: 1200478. doi: 10.3389/fcimb.2023.1200478.
153. Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol. 2011; 6(12): 1501-19. doi: 10.2217/fmb.11.120.
154. Ujang JA, Kwan SH, Ismail MN, Lim BH, Noordin R, Othman N. Proteome analysis of excretory-secretory proteins of Entamoeba histolytica HM1:IMSS via LC-ESI-MS/MS and LC-MALDI-TOF/ TOF. Clin Proteomics. 2016; 13: 33. doi: 10.1186/s12014-016-9135-8.
155. Perdomo D, Aït-Ammar N, Syan S, Sachse M, Jhingan GD, Guillén N. Data set for the proteomics analysis of the endomembrane system from the unicellular Entamoeba histolytica. J Proteomics. 2014; 112(2015): 125-40. doi: 10.1016/j.dib.2014.08.007.
156. Sharma M, Morgado P, Zhang H, Ehrenkaufer G, Manna D, Singh U. Characterization of extracellular vesicles from Entamoeba histolytica identifies roles in intercellular communication that regulates parasite growth and development. Infect Immun. 2020; 88: 00349-20. doi: 10.1128/IAI.00349-20.
157. Díaz-Godínez C, Ríos-Valencia DG, García-Aguirre S, Martínez- Calvillo S, Carrero JC. Immunomodulatory effect of extracellular vesicles from Entamoeba histolytica trophozoites: regulation of NETs and respiratory burst during confrontation with human neutrophils. Front Cell Infect Microbiol. 2022; 12: 1018314. doi: 10.3389/fcimb.2022.1018314.
158. Sharma M, Zhang H, Ehrenkaufer G, Singh U. Stress response in Entamoeba histolytica is associated with robust processing of tRNA to tRNA halves. mBio. 2023; 14(2): 1-16. doi: 10.1128/ mbio.03450-22.
159. Maciver SK, Asif M, Simmen MW, Lorenzo-Morales J. A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogenrich genotype. Eur J Protistol. 2013; 49: 217-21. doi: 10.1016/j. ejop.2012.11.004.
160. Moreira LR, Ramírez DV, Linares F, Ledezma AP, Garro AV, Osuna A, et al. Isolation of Acanthamoeba T5 from water: characterization of its pathogenic potential, including the production of extracellular vesicles. Pathogens. 2020; 9: 144. doi: 10.3390/ pathogens9020144.
161. Castro-Artavia E, Retana-Moreira L, Lorenzo-Morales J, Abrahams- Sandí E. Potentially pathogenic Acanthamoeba genotype T4 isolated from dental units and emergency combination showers. Mem Inst Oswaldo Cruz. 2017; 112(12): 817-21. doi: 10.1590/0074- 02760170147.
162. Alvarado-Ocampo J, Retana-Moreira L, Abrahams-Sandí E. In vitro effects of environmental isolates of Acanthamoeba T4 and T5 over human erythrocytes and platelets. Exp Parasitol. 2020; 210: 107842. doi: 10.1016/j.exppara.2020.107842.
163. Costa AO, Chagas IAR, de Menezes-Neto A, Rêgo FD, Nogueira PM, Torrecilhas AC, et al. Distinct immunomodulatory properties of extracellular vesicles released by different strains of Acanthamoeba. Cell Biol Int. 2021; 45: 1060-71. doi: 10.1002/cbin.11551.
164. Lin WC, Tsai CY, Huang JM, Wu SR, Chu LJ, Huang KY. Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors. 2019; 12: 467. doi: 10.1186/s13071-019-3725-z.
165. Gonçalves DS, Ferreira MS, Liedke SC, Gomes KX, de Oliveira GA, Leão PEL, et al. Extracellular vesicles and vesicle-free secretome of the protozoa Acanthamoeba castellanii under homeostasis and nutritional stress and their damaging potential to host cells. Virulence. 2018; 9(1): 818-36. doi: 10.1080/21505594.2018.1451184.
166. Gonçalves DS, Ferreira MS, Guimarães AJ. Extracellular vesicles from the protozoa Acanthamoeba castellanii: their role in pathogenesis, environmental adaptation and potential applications. Bioengineering. 2019; 6: 13. doi: 10.3390/bioengineering6010013.
167. Güémez A, García E. Primary amoebic meningoencephalitis by Naegleria fowleri: pathogenesis and treatments. Biomolecules. 2021; 11: 1320. doi: 10.3390/biom11091320.
168. Lertjuthaporn S, Somkird J, Lekmanee K, Atipimonpat A, Sukapirom K, Sawasdipokin H, et al. Extracellular vesicles from Naegleria fowleri induce IL-8 response in THP-1 macrophage. Pathogens. 2022; 11: 632. doi: 10.3390/pathogens11060632.
169. Retana-Moreira L, Espinoza MFS, Camacho NC, Cornet-Gomez A, Sáenz-Arce G, Osuna A, et al. Characterization of extracellular vesicles secreted by a clinical isolate of Naegleria fowleri and identification of immunogenic components within their protein cargo. Biology. 2022; 11: 983. doi: 10.3390/biology11070983.
170. Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the braineating amoeba, Naegleria fowleri. Front Microbiol. 2023; 14: 1264348. doi: 10.3389/fmicb.2023.1264348.
171. Retana-Moreira L, Cornet-Gomez A, Sepulveda MR, Molina- -Castro S, Alvarado-Ocampo J, Monge FC, et al. Providing an in vitro depiction of microglial cells challenged with immunostimulatory extracellular vesicles of Naegleria fowleri. Front Microbiol. 2024; 15: 1346021. doi: 10.3389/fmicb.2024.1346021.
172. Lê HG, Kang JM, Võ TC, Yoo WG, Na BK. Naegleria fowleri extracellular vesicles induce proinflammatory immune responses in BV-2 microglial cells. Int J Mol Sci. 2023; 24: 13623. doi: 10.3390/ijms241713623.
173. Drurey C, Maizels RM. Helminth extracellular vesicles: Interactions with the host immune system. Mol Immunol. 2021; 137: 124-33. doi: 10.1016/j.molimm.2021.06.017.
174. Olajide JS, Cai J. Perils and promises of pathogenic protozoan extracellular vesicles. Front Cell Infect Microbiol. 2020; 10: 371. doi: 10.3389/fcimb.2020.00371.
175. Alfandari D, Cadury S, Morandi MI, Regev-Rudzki N. Transforming parasites into their own foes: parasitic extracellular vesicles as a vaccine platform. Trends Parasitol. 2023; 39(11): 913-28. doi: 10.1016/j.pt.2023.08.009.