Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 119 | 2024
Research Articles

Point-of-care testing for COVID-19: a simple two-step molecular diagnostic development and validation during the SARS-CoV-2 pandemic

Andre Akira Gonzaga Yoshikawa1, Sabrina Fernandes Cardoso1,2, Lívia Budziarek Eslabão3, Iara Carolini Pinheiro1, Priscila Valverde4, Gisele Caminha5, Oscar Bruna Romero3, Leandro Medeiros6, Luísa Damazio Pitaluga Rona1,7,+, André Nóbrega Pitaluga7,8,+

1Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genética, Florianópolis, SC, Brasil
2Secretaria de Saúde do Estado de Santa Catarina, Diretoria de Vigilância Epidemiológica, Florianópolis, SC, Brasil
3Universidade Federal de Santa Catarina, Departamento de Microbiologia, Imunologia e Parasitologia, Florianópolis, SC, Brasil
4Secretaria Municipal de Saúde, Florianópolis, SC, Brasil
5Laboratório Central de Saúde Pública de Santa Catarina, Florianópolis, SC, Brasil
6Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina, Florianópolis, SC, Brasil
7Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brasil
8Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760230236
436 views 199 downloads
ABSTRACT

BACKGROUND During the coronavirus disease 19 (COVID-19) pandemic, diagnostic testing of the general population proved challenging due to limitations of the gold-standard diagnostic procedure using reverse transcription real-time polymerase chain reaction (RT-qPCR) for large-scale testing on the centralised model, especially in low-resource areas.
OBJECTIVES To address this, a point-of-care (PoC) diagnostic protocol for COVID-19 was developed, providing fast, reliable, and affordable testing, particularly for low-mid develop areas.
METHODS The PoC diagnostic process combines a simple paper-based RNA extraction method housed within a 3D-printed plastic device with a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay. Nasopharyngeal/oropharyngeal swabs (NOS) and saliva samples were tested between 2020 and 2021, with the assistance of Santa Catarina’s State Health Secretary, Brazil.
FINDINGS The developed diagnostic protocol showed a limit of detection of 9,900 copies and an overall diagnostic specificity of 98% for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from 1,348 clinical analysed samples. The diagnostic sensitivity was 95% for NOS samples, 85% for early morning saliva, and 69% for indiscriminate saliva.
MAIN CONCLUSIONS In conclusion, the developed device successfully extracted SARS-CoV-2 viral RNA from swabs and saliva clinical samples. When combined with colorimetric RT-LAMP, it provides results within 45 min using minimal resources, thus delivering a diagnostic kit protocol that is applicable in large-scale sampling.

REFERENCES
01. WHO - World’s Health Organization. Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020. Available from: https://www.who.int/director-general/speeches/detail/ who-director-general-s-opening-remarks-at-the-media-briefing- on-covid-19---11-march-2020.
02. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8): 727-33.
03. González-González E, Lara-Mayorga IM, Rodríguez-Sánchez IP, Zhang YS, Martínez-Chapa SO, Santiago GT, et al. Colorimetric loop-mediated isothermal amplification (LAMP) for costeffective and quantitative detection of SARS-CoV-2: the change in color in LAMP-based assays quantitatively correlates with viral copy number. Anal Methods. 2021; 13(2): 169-78.
04. Orellana JDY, da Cunha GM, Marrero L, Moreira RI, da Costa Leite I, Horta BL. Excess deaths during the COVID-19 pandemic: underreporting and regional inequalities in Brazil. Cad Saude Publica. 2021; 37(1): 01-16.
05. Lobo AP, Cardoso-Dos-Santos AC, Rocha MS, Pinheiro RS, Breem JM, Macário EM, et al. COVID-19 epidemic in Brazil: Where are we at? Int J Infect Dis. 2020; 97: 382-5.
06. Barreto ML, Barros AJD, Carvalho MS, Codeço CT, Hallal PRC, Medronho RA, et al. O que é urgente e necessário para subsidiar as políticas de enfrentamento da pandemia de COVID-19 no Brasil? [What is urgent and necessary to inform policies to deal with the COVID-19 pandemic in Brazil?]. Rev Bras Epidemiol. 2020; 23: e200032.
07. Carvalho TA, Boschiero MN, Marson FAL. COVID-19 in Brazil: 150,000 deaths and the Brazilian underreporting. Diagn Microbiol Infect Dis. 2021; 99(3): 115258.
08. de Oliveira KG, Estrela PFN, Mendes GM, Dos Santos CA, Silveira- Lacerda EP, Duarte GRM. Rapid molecular diagnostics of COVID-19 by RT-LAMP in a centrifugal polystyrene-toner based microdevice with end-point visual detection. Analyst. 2021; 146(4): 1178-87.
09. Cui Z, Chang H, Wang H, Lim B, Hsu CC, Yu Y, et al. Development of a rapid test kit for SARS-CoV-2: an example of product design. Biodes Manuf. 2020; 3(2): 83-6.
10. Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LPM, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMPsequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020; 12(556): eabc7075.
11. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12): E63.
12. Nagamine K, Hase T, Notomi T. Accelerated reaction by loopmediated isothermal amplification using loop primers. Mol Cell Probes. 2002; 16(3): 223-9.
13. Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008; 3(5): 877-82.
14. Huang WE, Lim B, Hsu CC, Xiong D, Wu E, Yu Y, et al. RTLAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020; 13(4): 950-61.
15. Chow FW, Chan TT, Tam AR, Zhao S, Yao W, Fung J, et al. A rapid, simple, inexpensive, and mobile colorimetric assay COVID- 19-LAMP for mass on-site screening of COVID-19. Int J Mol Sci. 2020; 21(15): 5380.
16. Nawattanapaiboon K, Pasomsub E, Prombun P, Wongbunmak A, Jenjitwanich A, Mahasupachai P, et al. Colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a visual diagnostic platform for the detection of the emerging coronavirus SARS-CoV-2. Analyst. 2021; 146(2): 471-7.
17. Matuck BF, Dolhnikoff M, Duarte-Neto AN, Maia G, Gomes SC, Sendyk DI, et al. Salivary glands are a target for SARS-CoV-2: a source for saliva contamination. J Pathol. 2021; 254(3): 239-43.
18. Rao M, Rashid FA, Sabri FSAH, Jamil NN, Zain R, Hashim R, et al. Comparing Nasopharyngeal swab and early morning saliva for the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2021; 72(9): e352-6.
19. Santos CAD, Oliveira KGD, Mendes GM, Silva LC, Souza Jr MND, Estrela PFN, et al. Detection of SARS-CoV-2 in saliva by RT-LAMP during a screening of workers in Brazil, including presymptomatic carriers. J Braz Chem Soc. 2021; 32: 2071-7.
20. GOV-SC/SES/SUS/SVS/DVE – Governo de Santa Catarina/ Secretaria de Estado da Saúde/Sistema Único de Saúde/Superintendência de Vigilância em Saúde/Diretoria de Vigilância Epidemiológica. Manual de orientações da COVID-19 (vírus SARS-Cov-2). 2022. Available from: https://www.cosemssc.org. br/wp-content/uploads/2022/02/MANUAL-DE-ORIENTAESDA- COVID-19-2022.pdf.
21. Cao Q, Mahalanabis M, Chang J, Carey B, Hsieh C, Stanley A, et al. Microfluidic chip for molecular amplification of influenza a RNA in human respiratory specimens. PLoS One. 2012; 7(3): 1-11.
22. Rodriguez NM, Linnes JC, Fan A, Ellenson CK, Pollock NR, Klapperich CM. Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens. Anal Chem. 2015; 87(15): 7872-9.
23. Pitaluga AN, Rona LD, Cardoso SF, Toledo C, Sebastiao LM, inventor. Molecular diagnostic point-of-care testing kit for Covid- 19. Brazil Patent BR10202100889 2022 Feb 2022.
24. Rabe BA, Cepko C. SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proc Natl Acad Sci USA. 2020; 117(39): 24450-8.
25. Zhang Y, Ren G, Buss J, Barry AJ, Patton GC, Tanner NA. Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. Biotechniques. 2020; 69(3): 178-85.
26. Lakens D. Sensitivity, specifity, and receiver operating characteristic curves. In: Motulsky H, editor. Intuitive biostatistics: a nonmathematical guide to statistical thinking. New York: Oxford University Press; 2018. p. 442-51.
27. Tsukagoshi H, Shinoda D, Saito M, Okayama K, Sada M, Kimura H, et al. Relationships between viral load and the clinical course of COVID-19. Viruses. 2021; 13(2): 304.
28. Zhu J, Guo J, Xu Y, Chen X. Viral dynamics of SARS-CoV-2 in saliva from infected patients. J Infection. 2020; 81(3): e48-e50.
29. Aoki MN, de Oliveira Coelho B, Góes LGB, Minoprio P, Durigon EL, Morello LG, et al. Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Sci Rep. 2021; 11(1): 9026.
30. Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, et al. Clinical evaluation of self-collected saliva by quantitative reverse transcription-PCR (RT-qPCR), direct RTqPCR, reverse transcription-loop-mediated isothermal amplification, and a rapid antigen test to diagnose COVID-19. J Clin Microbiol. 2020; 58(9): e01438-20.
31. Lalli MA, Langmade JS, Chen X, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clin Chem. 2021; 67(1): 415-24.
32. Uribe-Alvarez C, Lam Q, Baldwin DA, Chernoff J. Low saliva pH can yield false positives results in simple RT-LAMP-based SARSCoV- 2 diagnostic tests. PLoS One. 2021; 16(5): e0250202.
33. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012; 22(3): 276-82.
34. Kobayashi GS, Brito LA, Moreira DP, Suzuki AM, Hsia GSP, Pimentel LF, et al. A novel saliva RT-LAMP workflow for rapid identification of COVID-19 cases and restraining viral spread. Diagnostics (Basel). 2021; 11(8): 1400.
35. Silva LDC, dos Santos CA, Mendes GDM, Oliveira KGD, de Souza Jr MN, Estrela PFN, et al. Can a field molecular diagnosis be accurate? A performance evaluation of colorimetric RT-LAMP for the detection of SARS-CoV-2 in a hospital setting. Anal Methods. 2021; 13(26): 2898-2907.

Financial support: FIOCRUZ (VPPIS-005-FIO-20-2-45 - to ANP as a member of the grant team), SPK Solutions / ENGIE / Ministério Público do Trabalho - SC (to ANP and LDPR), Wellcome Trust (grant 207486/Z/17/Z - to LDPR as a member of the grant team), CNPq (to OBR).
LDPR and ANP contributed equally to this work.
+ Corresponding authors: luisa.rona@ufsc.br / pitaluga@ioc.fiocruz.br
ORCID https://orcid.org/0000-0002-3400-3950
ORCID https://orcid.org/0000-0001-6745-5542
Received 18 December 2023
Accepted 04 September 2024

HOW TO CITE
Yoshikawa AAG, Cardoso SF, Eslabão LB, Pinheiro IC, Valverde P, Caminha G, et al. Point-of-care testing for COVID-19: a simple two-step molecular diagnostic development and validation during the SARS-CoV-2 pandemic. Mem Inst Oswaldo Cruz. 2024; 119: e230236.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03h 
faperj   cnpq capes