Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 119 | 2024
Research Articles

HSV1-induced enhancement of productive HIV-1 replication is associated with interferon pathway downregulation in human macrophages

Viviane M Andrade1,2, Filipe Pereira-Dutra1, Juliana L Abrantes3, Milene D Miranda4, Thiago Moreno L Souza1,2,+

1Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
2Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Rio de Janeiro, RJ, Brasil
3Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brasil
4Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Morfologia e Morfogênese Viral, Rio de Janeiro, RJ, Brasil

DOI: 10.1590/0074-02760240102
572 views 453 downloads
ABSTRACT

BACKGROUND Herpesviruses are common co-pathogens in individuals infected with human immunodeficiency virus (HIV). Herpes simplex virus type 1 (HSV1) enhances HIV-1 replication and has evolved mechanisms to evade or disrupt host innate immune responses, including interference with interferon (IFN) signalling pathways.
OBJECTIVES The aimed of this work was evaluated whether it HSV1 affects HIV-1 replication through the modulation of the IFN pathway in human macrophages.
METHODS Co-infections with HSV1 and HIV-1 were performed in monocyte-derived human macrophages (hMDMs). The production of infectious HIV-1 and HSV-1 was monitored 48 h post-coinfection. Additionally, mRNA and protein expression levels of interferon-stimulated genes (ISGs) were evaluated in both HIV-1-HSV1 coinfections and HSV1 mono-infections.
FINDINGS The HSV1 coinfection increasing the HIV-1 productive replication, following of downregulation of interferon-alpha (IFN-α) and interferon-induced transmembrane protein 3 (IFITM3) expression in hMDMs. Acyclovir treatment, in a dose-dependent manner, mitigated HSV1’s ability to decrease IFITM3 levels. Knockdown of HSV1 Us11 and virion host shutoff (VHS) genes reactivated the IFN pathway, evidenced by restored IFITM3 expression and activation of eIF2-α and PKR. This knockdown also returned HIV-1 replication to baseline levels.
MAIN CONCLUSIONS Our data suggested that HSV1 increases HIV-1 replication in human macrophages is associated with the downregulating interferon pathways and ISGs expression.

REFERENCES
01. GBD 2017 HIV collaborators. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV. 2019; 6(12): e831-59.
02. WHO - World Health Organization. Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections for the period 2022-2030. Geneva: World Health Organization; 2022.
03. Deeks SG, Overbaugh J, Phillips A, Buchbinder S. HIV infection. Nat Rev Dis Primers. 2015; 1: 15035.
04. Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, et al. Insights into persistent HIV-1 infection and functional cure: novel capabilities and strategies. Front Microbiol. 2022; 13: 1-28.
05. Chang CC, Crane M, Zhou J, Mina M, Post JJ, Cameron BA, et al. HIV and co-infections. Immunol Rev. 2013; 254(1): 114-42.
06. Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013; 254(1): 326-42.
07. Stewart JA, Reef SE, Pellett PE, Corey L, Whitley RJ. Herpesvirus infections in persons infected with human immunodeficiency virus. Clin Infect Dis. 1995; 21: 114-20.
08. Gianella S, Massanella M, Wertheim JO, Smith DM. the sordid affair between human herpesvirus and HIV. J Infect Dis. 2015; 212(6): 845-52.
09. Margolis DM, Ostrove JM, Straus SE. HSV-1 activation of HIV-1 transcription is augmented by a cellular protein that binds near the initiator element. Virology. 1993; 192(1): 370-4.
10. Heng MCY, Heng SY, Allen SG. Co-infection and synergy of human immunodeficiency virus-1 and herpes simplex virus-1. Lancet. 1994; 343(8892): 255-8.
11. Suazo PA, Tognarelli EI, Kalergis AM, González PA. Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease. Med Microbiol Immunol. 2015; 204(2): 161-76.
12. Crisci E, Svanberg C, Ellegård R, Khalid M, Hellblom J, Okuyama K, et al. HSV-2 cellular programming enables productive HIV infection in dendritic cells. Front Immunol. 2019; 10: 2889.
13. Tan DHS, Kaul R, Walsmley S. Left out but not forgotten: should closer attention be paid to coinfection with herpes simplex virus type 1 and HIV? Can J Infect Dis Med Microbiol. 2009; 20(1): 1-8.
14. Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, et al. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017; 17(12): 1303-16.
15. James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020; 98(5): 315-29.
16. Packard JE, Dembowski JA. HSV-1 DNA r eplication — coordinated regulation by viral and cellular factors. Viruses. 2021; 13(10): 2015.
17. Banete A, Barilo J, Whittaker R, Basta S. The activated macrophage – A tough fortress for virus invasion: how viruses strike back. Front Microbiol. 2022; 12: 1-8.
18. Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front Immunol. 2018; 9: 1-18.
19. Alandijany T. Host intrinsic and innate intracellular immunity during herpes simplex virus type 1 (HSV-1) infection. Front Microbiol. 2019; 10: 1-20.
20. Liu Q, Rao Y, Tian M, Zhang S, Feng P. Modulation of innate immune signaling pathways by herpesviruses. Viruses. 2019; 11(6): 572.
21. Mossman KL, Smiley JR. Herpes simplex virus ICP0 and ICP34.5 counteract distinct interferon-induced barriers to virus replication. J Virol. 2002; 76(4): 1995-8.
22. Duerst RJ, Morrison LA. Herpes simplex virus 2 virion host shutoff protein interferes with type I interferon production and responsiveness. Virology. 2004; 322(1): 158-67.
23. Ishioka K, Ikuta K, Sato Y, Kaneko H, Sorimachi K, Fukushima E, et al. Herpes simplex virus type 1 virion-derived US11 inhibits type 1 interferon-induced protein kinase R phosphorylation. Microbiol Immunol. 2013; 57(6): 426-36.
24. Wang S, Wang K, Lin R, Zheng C. Herpes simplex virus 1 serine/ threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol. 2013; 87(23): 12814-27.
25. Ferreira AC, Sacramento CQ, Pereira-Dutra FS, Fintelman-Rodrigues N, Mattos M, de Freitas CS, et al. Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages. Front Cell Infect Microbiol. 2023; 13: 1067285.
26. Souza TML, Rodrigues DQ, Passaes CPB, Barreto-de-Souza V, Aguiar RS, Temerozo JR, et al. The nerve growth factor reduces APOBEC3G synthesis and enhances HIV-1 transcription and replication in human primary macrophages. Blood. 2011; 117(10): 2944-52.
27. Miranda MD, Chaves OA, Rosa AS, Azevedo AR, Pinheiro LCS, Soares VC, et al. The role of pyrazolopyridine derivatives on different steps of herpes simplex virus type-1 in vitro replicative cycle. Int J Mol Sci. 2022; 23(15): 1-15.
28. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol. 2009; 485: 395-405.
29. Pereira-Dutra F, Cancela M, Meneghetti BV, Ferreira HB, Monteiro KM, Zaha A. Functional characterization of the translation initiation factor eIF4E of Echinococcus granulosus. Parasitol Res. 2019; 118(10): 2843-55.
30. Moriuchi M, Moriuchi H, Williams R, Straus SE. Herpes simplex virus infection induces replication of human immunodeficiency virus type 1. Virology. 2000; 278(2): 534-40.
31. Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The interplay of HIV-1 and macrophages in viral persistence. Front Microbiol. 2021; 12: 1-15.
32. Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012; 2(5): 1-17.
33. Yokota SI, Yokosawa N, Kubota T, Suzutani T, Yoshida I, Miura S, et al. Herpes simplex virus type 1 suppresses the interferon signaling pathway by inhibiting phosphorylation of STATs and janus kinases during an early infection stage. Virology. 2001; 286(1): 119-24.
34. Decalf J, Desdouits M, Rodrigues V, Gobert FX, Gentili M, Marques-Ladeira S, et al. Sensing of HIV-1 entry triggers a type I interferon response in human primary macrophages. J Virol. 2017; 91(15): 1-15.
35. Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012; 36(3): 684-705.
36. Lau SLY, Yuen ML, Kou CYC, Au KW, Zhou J, Tsui SKW. Interferons induce the expression of IFITM1 and IFITM3 and suppress the proliferation of rat neonatal cardiomyocytes. J Cell Biochem. 2012; 113(3): 841-7.
37. Mesquita M, Fintelman-Rodrigues N, Sacramento CQ, Abrantes JL, Costa E, Temerozo JR, et al. HIV-1 and Its gp120 inhibits the influenza A(H1N1) pdm09 life cycle in an IFITM3-dependent fashion. PLoS One. 2014; 9(6): e101056.
38. Nasr N, Maddocks S, Turville SG, Harman AN, Woolger N, Helbig KJ, et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. Blood. 2012; 120(4): 778-88.
39. Wilcox DR, Longnecker R. The herpes simplex virus neurovirulence factor γ34.5: revealing virus-host interactions. PLoS Pathog. 2016; 12(3): 1-7.
40. Grinde B. Herpesviruses: latency and reactivation ― viral strategies and host response. J Oral Microbiol. 2013;5(1): 22766.
41. Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virol J. 2005; 2(1): 59.
42. Diaz JJ, Due Dodon M, Schaerer-Uthurralt N, Simonin D, Kindbeiter K, Gazzolo L, et al. post-transcriptional transactivation of human retroviral envelope glycoprotein expression by herpes simplex virus Us11 protein. Nature. 1996; 379(6562): 273-7.
43. Duc Dodon M, Mikaélian I, Sergeant A, Gazzolo L. The herpes simplex virus 1 US11 protein cooperates with suboptimal amounts of human immunodeficiency virus type 1 (HIV-1) rev protein to rescue HIV-1 production. Virology. 2000; 270(1): 43-53.
44. Barbour JD, Sauer MM, Sharp ER, Garrison KE, Long BR, Tomiyama H, et al. HIV-1/HSV-2 co-infected adults in early HIV-1 infection have elevated CD4+ T cell counts. PLoS One. 2007; 2(10): 1-5.
45. Shu M, Taddeo B, Zhang W, Roizman B. Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein. Proc Natl Acad Sci USA. 2013; 110(18): E1669-75.
46. He T, Wang M, Cheng A, Yang Q, Wu Y, Jia R, et al. Host shutoff activity of VHS and SOX-like proteins: role in viral survival and immune evasion. Virol J. 2020; 17(1): 1-11.
47. Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J. 2016; 13(1): 1-9.
48. Outline C. Herpesvirales. Dans: Fenner’s veterinary virology. Elsevier; 2017: 189-216.
49. Lin Y, Zheng C. A tug of war: DNA-sensing antiviral innate immunity and herpes simplex virus type I infection. Front Microbiol. 2019; 10: 2627.
50. Lee WYJ, Fu RM, Liang C, Sloan RD. IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep. 2018; 8(1): 1-15.
51. Beitari S, Pan Q, Finzi A, Liang C. Differential pressures of SERINC5 and IFITM3 on HIV-1 envelope glycoprotein over the course of HIV-1 infection. J Virol. 2020; 94(16): 1-13.
52. Drouin A, Migraine J, Durand MA, Moreau A, Burlaud-Gaillard J, Beretta M, et al. Escape of HIV-1 envelope glycoprotein from restriction of infection by IFITM3. J Virol. 2021; 95(5): 1-18.
53. Kriesel F, Schelle L, Baldauf HM. Same same but different - Antiviral factors interfering with the infectivity of HIV particles. Microbes Infect. 2020; 22(9): 416-22.
54. Johnson KE, Song B, Knipe DM. Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology. 2008; 374(2): 487-94.
55. Hu B, Li X, Huo Y, Yu Y, Zhang Q, Chen G, et al. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep. 2016; 6: 1-14.
56. Lussignol M, Queval C, Bernet-Camard MF, Cotte-Laffitte J, Beau I, Codogno P, et al. The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J Virol. 2013; 87(2): 859-71.
57. Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, et al. The role of host eIF2α in viral infection. Virol J. 2020; 17(1): 1-15.
58. Clerzius G, Gélinas JF, Gatignol A. Multiple levels of PKR inhibition during HIV-1 replication. Rev Med Virol. 2011; 21(1): 42-53.
59. Pennisi R, Musarra-Pizzo M, Lei Z, Zhou GG, Sciortino MT. VHS, US3 and UL13 viral tegument proteins are required for herpes simplex virus-induced modification of protein kinase R. Sci Rep. 2020; 10(1): 5580.

Financial support: CNPq, CAPES, FAPERJ.
VMA and FP-D contributed equally to this work.
+ Corresponding author: thiago.moreno@fiocruz.br
ORCID https://orcid.org/0000-0003-2212-3899
Received 02 May 2024
Accepted 05 September 2024

HOW TO CITE
Andrade VM, Pereira-Dutra F, Abrantes JL, Miranda MD, Souza TML. HSV1-induced enhancement of productive HIV-1 replication is associated with interferon pathway downregulation in human macrophages. Mem Inst Oswaldo Cruz. 2024; 119: e240102.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03h 
faperj   cnpq capes