Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 119 | 2024
Research Articles

First comparative genomics analysis of Corynebacterium auriscanis

Ana Lua de Oliveira Vinhal1, Max Roberto Batista de Araújo1,2, Evandro Bento Rodrigues1,2, Diogo Luiz de Carvalho Castro1, Carine Rodrigues Pereira3, Dircéia Aparecida Costa Custódio3, Elaine Maria Seles Dorneles3, Flávia Figueira Aburjaile4, Bertram Brenig5, Vasco Azevedo1, Marcus Vinicius Canário Viana1,+

1Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Belo Horizonte, MG, Brasil
2Instituto Hermes Pardini-Grupo Fleury, Microbiologia, Núcleo de Operações Técnicas, Vespasiano, MG, Brasil
3Universidade Federal de Lavras, Faculdade de Zootecnia e Medicina Veterinária, Departamento de Medicina Veterinária, Lavras, MG, Brasil
4Universidade Federal de Minas Gerais, Escola de Veterinária, Belo Horizonte, MG, Brasil
5University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany

DOI: 10.1590/0074-02760240156
949 views 1160 downloads
ABSTRACT

BACKGROUND Corynebacterium auriscanis is a bacterial species frequently isolated from dogs with external otitis or dermatitis and a zoonotic pathogen transmitted by dog bite. It is considered an opportunistic pathogen, but its pathogenicity mechanisms are poorly studied. Comparative genomics can identify virulence and niche factors that could contribute to understanding its lifestyle.
OBJECTIVES The objectives of this project was to compare genomes of C. auriscanis to identify genes related to its virulence and lifestyle.
METHODS The genome of strain 32 was sequenced using Illumina HiSeq 2500 (Illumina, CA, USA) and assembled using Unicycler. The two other non-redundant genomes from the same species available in GenBank were included in the analysis. All genomes were annotated and checked for taxonomy, assembly quality, mobile elements, CRISPR-Cas systems, and virulence and antimicrobial resistance genes. The virulence genes in the three genomes were compared to the ones from other pathogens commonly isolated with C. auriscanis.
FINDINGS The species has 42 virulence factors that can be classified as niche factors, due to the absence of true virulence factors found in primary pathogens. The gene rbpA could confer basal levels of resistance to rifampin.
MAIN CONCLUSIONS The absence of true virulence factors in the three genomes suggests C. auriscanis has an opportunistic pathogen lifestyle.

REFERENCES
01. Collins MD, Hoyles L, Lawson PA, Falsen E, Robson RL, Foster G. Phenotypic and phylogenetic characterization of a new Corynebacterium species from dogs: description of Corynebacterium auriscanis sp. nov. J Clin Microbiol. 1999; 37: 3443-7.
02. Aalbæk B, Bemis DA, Schjærff M, Kania SA, Frank LA, Guardabassi L. Coryneform bacteria associated with canine otitis externa. Vet Microbiol. 2010; 145: 292-8.
03. Boynosky NA, Stokking LB. Retrospective evaluation of canine dermatitis secondary to Corynebacterium spp. J Am Anim Hosp Assoc. 2015; 51: 372-9.
04. Bygott JM, Malnick H, Shah JJ, Chattaway MA, Karas JA. First clinical case of Corynebacterium auriscanis isolated from localized dog bite infection. J Med Microbiol. 2008; 57: 899-900.
05. Atxaerandio-Landa A, Arrieta-Gisasola A, Laorden L, Bikandi J, Garaizar J, Martinez-Malaxetxebarria I, et al. A practical bioinformatics workflow for routine analysis of bacterial WGS data. Microorganisms. 2022; 10: 2364.
06. Andrews S. FASTQC a quality control tool for high throughput sequence data. Babraham Institute. 2015. Available from: http:// www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3 Analysis Modules/.
07. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017; 13: e1005595.
08. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods. 2023; 20: 1203-12.
09. Orakov A, Fullam A, Coelho LP, Khedkar S, Szklarczyk D, Mende DR, et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 2021; 22: 178.
10. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013; 29: 1072-5.
11. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022; 38: 5315-6.
12. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genomebased classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022; 50(D1): D801-7.
13. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom. 2018; 4(8): e000206.
14. Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016; 11: e0163962.
15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016; 44: 6614-24.
16. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, et al. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021; 49: D1020-8.
17. Hill C. Virulence or niche factors: what’s in a name? J Bacteriol. 2012; 194: 5725-7.
18. Tauch A, Burkovski A. Molecular armory or niche factors: virulence determinants of Corynebacterium species. FEMS Microbiol Lett. 2015; 67: fnv185.
19. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019; 47: D687-92.
20. Rodrigues DLN, Ariute JC, Rodrigues da Costa FM, Benko-Iseppon AM, Barh D, Azevedo V, et al. PanViTa: pan virulence and resisTance analysis. Front Bioinform. 2023; 3: 1070406.
21. Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022; 50: D912-7.
22. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020; 48: D517-25.
23. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44: W16-21.
24. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018; 46: W246-51.
25. Soares SC, Geyik H, Ramos RTJ, de Sá PHCG, Barbosa EGV, Baumbach J, et al. GIPSy: genomic island prediction software. J Biotechnol. 2016; 232: 2-11.
26. Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 2011; 12: 402.
27. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016; 8: 12-24.
28. Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, et al. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput Biol. 2020; 16: e1007732.
29. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017; 34: 2115-22.
30. Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020; 18: 67-83.
31. Ramos JN, Araújo MRB, Sant’Anna LO, Bokermann S, Camargo CH, Prates FD, et al. Molecular characterization and whole-genome sequencing of Corynebacterium diphtheriae causing skin lesion. Eur J Clin Microbiol Infect Dis. 2024; 43: 203-8.
32. Gimenez EGT, Viana MVC, Sousa TJ, Aburjaile F, Brenig B, Silva A, et al. Resequencing and characterization of the first Corynebacterium pseudotuberculosis genome isolated from camel. PeerJ. 2024; 12: e16513.
33. Prates FD, Araújo MRB, Sousa EG, Ramos JN, Viana MVC, Soares SC, et al. First pangenome of Corynebacterium rouxii, a potentially toxigenic species of Corynebacterium diphtheriae complex. Bacteria. 2024; 3: 99-117.
34. Ramos JN, Baio PVP, Veras JFC, Vieira ÉMD, Mattos-Guaraldi AL, Vieira VV. Novel configurations of type I-E CRISPR-Cas system in Corynebacterium striatum clinical isolates. Braz J Microbiol. 2023; 54: 69-80.
35. Ishikawa J, Chiba K, Kurita H, Satoh H. Contribution of rpoB2 RNA polymerase β subunit gene to rifampin resistance in Nocardia Species. Antimicrob Agents Chemother. 2006; 50: 1342-6.
36. Newell KV, Thomas DP, Brekasis D, Paget MSB. The RNA polymerase‐ binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol. 2006; 60: 687-96.
37. Bertelli C, Tilley KE, Brinkman FSL. Microbial genomic island discovery, visualization and analysis. Brief Bioinform. 2019; 20: 1685-98.
38. Toft C, Andersson SGE. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010; 11: 465-75.

Financial support: CAPES, CNPq, UFMG, FAPEMIG.
+ Corresponding author: canarioviana@gmail.com
ORCID https://orcid.org/0000-0002-7017-6437
Received 15 July 2024
Accepted 05 September 2024

HOW TO CITE
Vinhal ALO, de Araújo MRB, Rodrigues EB, Castro DLC, Pereira CR, Custódio DAC, et al. First comparative genomics analysis of Corynebacterium auriscanis. Mem Inst Oswaldo Cruz. 2024; 119: e240156.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03h 
faperj   cnpq capes