Mem Inst Oswaldo Cruz, Rio de Janeiro, VOLUME 119 | 2024
Research Articles

Investigating the distribution of a rare Colombo-Venezuelan Kissing Bug, Rhodnius neivai, Lent, 1953, using geographical information system-based analyses

Guilherme Sanches Corrêa-do-Nascimento1,2,+, Cleber Galvão3, Gustavo Rocha Leite1,4

1Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Ciências Biológicas, Vitória, ES, Brasil
2Instituto Nacional da Mata Atlântica, Santa Teresa, ES, Brasil
3Fundação Oswaldo Cruz-Fiocruz, Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Rio de Janeiro, RJ, Brasil
4Universidade Federal do Espírito Santo, Departamento de Patologia, Vitória, ES, Brasil

DOI: 10.1590/0074-02760240106
629 views 995 downloads
ABSTRACT

BACKGROUND Rhodnius neivai, a kissing bug found in the dry regions of Colombia and Venezuela, has limited documented occurrences. While it is not deemed a significant vector for Chagas disease, distributional and ecological studies are essential in monitoring species domiciliation and shedding light on the evolutionary aspects of the Rhodniini tribe.
OBJECTIVES The study aims to provide a detailed revision of R. neivai distribution and evaluate general spatial data quality for ecological niche modelling (ENM). It will also provide the first published ENM for the species, which may aid species sampling and future analytical improvement.
METHODS Registers and other spatial information were gathered by literature review; data georeferencing, preliminary geographical investigations, and model editing were conducted in GIS platforms; ENMs were built using R and explored the uncertainty of parameters and algorithms.
FINDINGS Twenty four unique sites were identified, unearthing 17 previously uncovered records. Data lacks robust spatial and temporal precision; however, ENMs had acceptable validations. The models present some variation in suitability but with objective areas for sampling effort.
MAIN CONCLUSIONS Rhodnius neivai distribution is better explained by conditions that characterise dry ecotypes, but further sampling is essential to improve modelling and advance with ecological and evolutive matters.

REFERENCES
01. Schofield CJ, Galvão C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009; 110(2-3): 88-100.
02. Justi SA, Galvão C. The evolutionary origin of diversity in Chagas disease vectors. Trends Parasitol. 2017; 33(1): 42-52.
03. Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease. Adv Parasitol. 2018; 99: 265-344.
04. Oliveira-Correia JPS, Oliveira J, Gil-Santana HR, Rocha DS, Galvão C. Taxonomic reassessment of Rhodnius zeledoni Jurberg, Rocha & Galvão: a morphological and morphometric analysis comparing its taxonomic relationship with Rhodnius domesticus Neiva & Pinto. BMC Zool. 2024; 9(1): 6.
05. Masonick PK, Knyshov A, Gordon ERL, Forero D, Hwang WS, Hoey-Chamberlain R, et al. A revised classification of the assassin bugs (Hemiptera: Heteroptera: Reduviidae) based on combined analysis of phylogenomic and morphological data. Syst Entomol. 2024; 1-37.
06. Cazorla-Perfetti D. Revisión de los vectores de la enfermedad de Chagas en Venezuela (Hemiptera-Heteroptera, Reduviidae, Triatominae). Saber. 2016; 28(3): 387-470.
07. Méndez-Cardona S, Ortiz MI, Carrasquilla MC, Fuya P, Guhl F, González C. Altitudinal distribution and species richness of triatomines (Hemiptera:Reduviidae) in Colombia. Parasit Vectors. 2022; 15: 450.
08. Carcavallo RU, Tonn RJ, Carrasquero B. Distribución de Triatominos en Venezuela, (Hemiptera, Reduviidae). Actualización por entidades y zonas biogeográficas. Bol Dir Malariol San Amb. 1977; 17(1): 53-65.
09. Carcavallo RU, Tonn RJ, Jiménez JC. Notas sobre biología, ecología y distribución geográfica de Rhodnius neivai Lent, 1953 (Hemiptera, Reduviidae). Bol Dir Malariol San Amb. 1976; 16(2): 169-71.
10. Carcavallo RU, Rodriguez MEF, Salvatella R, Curto de Casas SI, Sherlock IS, Galvão C, et al. Habitats and related fauna. In: Carcavallo RU, Girón IG, Jurberg J. Atlas of Chagas’ disease vectors in the Americas. Rio de Janeiro: Fiocruz; 1998; p. 537-60.
11. Lent H, Wygodzinsky P. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist. 1979; 163: 125-520.
12. Cabello DR. Resistance to starvation of Rhodnius neivai Lent, 1953 (Hemiptera: Reduviidae: Triatominae) under experimental conditions. Mem Inst Oswaldo Cruz. 2001; 96(4): 587-91.
13. Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110(3): 277-82.
14. López-García A, Gilabert JA. Oral transmission of Chagas disease from a one health approach: a systematic review. Trop Med Int Health. 2023; 28(9): 689-98.
15. Segura-Alba ML, Hernandez C, Guerra AP, Luna N, Cortes LJ, Acevedo CR, et al. Acute Chagas disease outbreaks in Colombia in 2019. IJID Reg. 2024; 12: 100410.
16. Fletcher-Lartey SM, Caprarelli G. Application of GIS technology in public health: successes and challenges. Parasitology. 2016; 143(4): 401-15.
17. Palaniyandi M. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review. J Vector Borne Dis. 2012; 49(4): 197-204.
18. Gurgel-Gonçalves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling. J Trop Med. 2012; 1-15.
19. Ceccarelli S, Balsalobre A, Susevich ML, Echeverria MG, Gorla DE, Marti GA. Modelling the potential geographic distribution of triatomines infected by Triatoma virus in the southern cone of South America. Parasit Vectors. 2015; 8: 153.
20. Garrido R, Bacigalupo A, Peña-Gómez F, Bustamante RO, Cattan PE, Gorla DE, et al. Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi. Parasit Vectors. 2019; 12: 478.
21. Paula AS, Barreto C, Telmo MCM, Diotaiuti L, Galvão C. Historical biogeography and the evolution of hematophagy in Rhodniini (Heteroptera: Reduviidae: Triatominae). Front Ecol Evol. 2021; 9: 660151.
22. Corrêa-do-Nascimento GS, Leite GR. Current and paleoclimate models for an Atlantic Forest kissing bug indicate broader distribution outside biome delimitations. Front Ecol Evol. 2023; 10: 1051454.
23. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A; NCEAS Predicting Species Distributions Working Group. Effects of sample size on the performance of species distribution models. Divers Distrib. 2008; 14: 763-73.
24. Mateo RG, Felicísimo ÁM, Muñoz J. Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. J Veg Sci. 2010; 21: 908-22.
25. Park DS, Davis CC. Implications and alternatives of assigning climate data to geographical centroids. J Biogeogr. 2017; 44: 2188-98.
26. Cheng Y, Tjaden NB, Jaeschke A, Thomas SM, Beierkuhnlein C. Using centroids of spatial units in ecological niche modelling: effects on model performance in the context of environmental data grain size. Glob Ecol Biogeogr. 2021; 2: 1-11.
27. Gorla DE, Noireau F. Geographic distribution of Triatominae vectors in America. In: Telleria J, Tibayrenc M, editors. American trypanosomiasis Chagas disease. Elsevier. 2017; 197-221.
28. Guhl F, Aguilera G, Pinto N, Vergara D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 2007; 27(1): 143-62.
29. Ceccarelli S, Balsalobre A, Medone P, Cano ME, Gurgel-Gonçalves R, Feliciangeli D, et al. DataTri, a database of American triatomine species occurrence. Sci Data. 2018; 5: 180071.
30. Ceccarelli S, Balsalobre A, Vicente ME, Curtis-Robles R, Hamer SA, Ayala Landa JM, et al. American triatomine species occurrences: updates and novelties in the DataTri database. Giga- Byte. 2022; 62.
31. Diniz-Filho JA, Jardim L, Guedes JJM, Meyer L, Stropp J, Frateles LEF, et al. Macroecological links between the Linnean, Wallacean, and Darwinian shortfalls. Front Biogeogr. 2023; 15(2): e59566.
32. CEPAVE - Centro de Estudios Parasitológicos y de Vectores. Bib- Tri. [cited 2023 Aug. 27]. Available from: https://bibtri.cepave. edu.ar/webbibtri.php.
33. GBIF - Global Biodiversity Information Facility. GBIF home page. [cited 2023 Aug 7]. Available from: https://www.gbif.org
34. UNOCHA - United Nations Office for the Coordination of Humanitarian Affairs. The humanitarian data exchange. [cited 2023 Aug. 27]. Available from: https://data.humdata.org/.
35. ESRI - Environmental Systems Research Institute. ArcGIS Desktop: Release 10.8 Redlands: 2019. Available from: https://www. esri.com/en-us/home?srsltid=AfmBOor9ayyXoE4fyB00vXVZlC qfAwjqN4ZA5gy1A2C5rLveAhV-nvWi.
36. Morrone JJ, Escalante T, Rodríguez-Tapia G, Carmona A, Arana M, Mercado-Gómez JD. Biogeographic regionalization of the neotropical region: new map and shapefile. An Acad Bras Cienc. 2022; 94: e20211167.
37. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, et al. Terrestrial ecoregions of the world: a new map of life on earth. BioScience. 2001; 51(11): 933-8.
38. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017; 4: 170122.
39. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies at high resolution for the earth’s land surface areas. Sci Data. 2017; 4: 170122.
40. Brown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci Data. 2018; 5: 180254.
41. Escobar LE, Lira-Noriega A, Medina-Vogel G, Peterson AT. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat Health. 2014; 9: 221.
42. Samy AM, Elaagip AH, Kenawy MA, Ayres CFJ, Peterson AT, Soliman DE. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS One. 2016; 11: e0163863.
43. Raghavan RK, Barker SC, Cobos ME, Barker D, Teo EJM, Foley DH, et al. Potential spatial distribution of the newly introduced long-horned tick, Haemaphysalis longicornis in North America. Sci Rep. 2019; 9: 498.
44. Hosni EM, Nasser MG, Al-Ashaal SA, Rady MH, Kenawy MA. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci Rep. 2020; 10: 4947.
45. Booth TH. Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecol. 2022; 47: 1506-14.
46. Phillips SJ, Dudík M, Schapire RE. Maxent software for modeling species niches and distributions (Version 3, 4.4). [cited 2022 Sep. 01]. Available from: http://biodiversityinformatics.amnh.org/ open_source/maxent/.
47. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [cited 2022 Sep. 01]. Available from: https://www.r-project.org/.
48. Bender A, Python A, Lindsay SW, Golding N, Moyes CL. Modelling geospatial distributions of the triatomine vectors of Trypanosoma cruzi in Latin America. PLoS Negl Trop Dis. 2020; 14(8): e0008411.
49. Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 2019; 7: e6281.
50. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013; 36: 27-46.
51. Altamiranda-Saavedra M, Osorio-Olvera L, Yáñez-Arenas C, Marín-Ortiz JC, Parra-Henao G. Geographic abundance patterns explained by niche centrality hypothesis in two Chagas disease vectors in Latin America. PLoS One. 2020; 15: e0241710.
52. Brown JL. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol. 2014; 5: 694-700.
53. Cobos ME, Peterson AT, Osorio-Olvera L, Jiménez-García D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019; 3: 100983.
54. Peterson AT, Papes M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell. 2008; 213: 63-72.
55. Lobo JM, Jiménez-Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr. 2008; 17(2): 145-51.
56. Qiao H, Soberón J, Peterson AT. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol. 2015; 6: 1126-36.
57. De Marco PJ, Nóbrega CC. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS One. 2018; 13: e0202403.
58. Andrade AFA, Velazco SJE, De Marco PJ. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ Modell Softw. 2020; 125: 104615.
59. DER - División de Endemias Rurales. Campaña contra la enfermedad de Chagas. Revista Venezolana de Sanidad y Asistencia Social. 1965; 31(1): 113-54.
60. Veliz O, Morillo N, Torres R, Bonfante R. Rhodnius neivai naturalmente infectado con Trypanosoma cruzi en la ciudad de Barquisimeto, Estado Lara, Venezuela. Acta Méd Venez. 1972; 19: 392-3.
61. Otero MA, Jiménez JC, Carcavallo RU, Ortega R, Tonn RJ. Actualización de la distribución geográfica de Triatominae (Hemiptera, Reduviidae) en Venezuela. Boletín de la Dirección de Malariología y Saneamiento Ambiental. 1975; 15(5): 217-30.
62. Otero MA, Giménez JC, Ortega R, Carcavallo R, Tonn R. New records of geografical distribution of Triatominae in Venezuela. WHO/VBC. 1975; 10 pp.
63. de Olaria TR. Nota sobre la presencia de Rhodnius neivai Lent, 1953 (Hemiptera, Reduviidae-Triatominae) en el municipio Chinquinquira. Distrito Maracaibo, estado Zulia - Venezuela. Kasmera. 1985; 13: 1-4.
64. Gonçalves TCM, Almeida MD, Jurberg J, Lent H. Lista dos exemplares- tipos de triatomíneos depositados na coleção entomológica do Instituto Oswaldo Cruz, Rio de Janeiro (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 1993; 88(2): 327-33.
65. Körner C. Mountain biodiversity, its causes and function. Ambio. 2004; 13: 11-7.
66. Lent H. Um novo hemiptero hematófago da Venezuela (Reduviidae, Triatominae). Rev Bras Biol. 1953; 13(2): 169-72.
67. Cova-Garcia P, Suarez M. Estudio de los Triatominos en Venezuela. Ministerio de Sanidad y Asistencia Social, Caracas, Venezuela. Publicaciones de la División de Malariología. 1959; 11: 209.
68. Lent H, Jurberg J. O género Rhodnius stal, 1859, com um estudo sobre a genitália das espécies (Hemiptera, Reduviidae, Triatominae). Rev Bras Biol. 1969; 29(4): 487-560.
69. Gamboa CJ. Distribución geográfica y prevalencia de la población de Triatominos en Venezuela. Maracay: Report to the CDVRU Planning Meeting; 1973.
70. Harry M, Roose CL, Vautrin D, Noireau F, Romaña CA, Solignac M. Microsatellite markers from the Chagas disease vector, Rhodnius prolixus (Hemiptera, Reduviidae), and their applicability to Rhodnius species. Infect Genet Evol. 2008; 8(3): 381-5.
71. Pita S, Panzera F, Ferrandis I, Galvão C, Gómez-Palacio A, Panzera Y. Chromosomal divergence and evolutionary inferences of Rhodniini based on the chromosomal location of ribosomal genes. Mem Inst Oswaldo Cruz. 2013; 108(3): 376-382.
72. D’Alessandro A, Barreto P. Colombia. In: Carcavallo RW, Rabinovich JE, Tonn RJ, editors. Factores biológicos y ecológicos en la enfermedad de Chagas. Buenos Aires: ECO/SNCH; 1985. p. 377-400.
73. Morales A, Ferro C, Isaza de Rodríguez C, Cura E. Encuesta sobre artropodos de interés médico en La Guajira, Colombia, Suramérica. Biomedica. 1987; 7(3-4): 89-94.
74. Perrigo A, Hoorn C, Antonelli A. Why mountains matter for biodiversity. J Biogeogr. 2020; 47: 315-25.
75. Rodriguero MS, Gorla DE. Latitudinal gradient in species richness of the New World Triatominae (Reduviidae). Glob Ecol Biogeogr. 2004; 13: 75-84.
76. Diniz-Filho JAF, Ceccarelli S, Hasperué W, Rabinovich J. Geographical patterns of Triatominae (Heteroptera: Reduviidae) richness and distribution in the Western Hemisphere. Insect Conserv Divers. 2013; 6: 704-14.
77. Parra-Henao G, Quirós-Gómez O, Jaramillo-O N, Cardona ÁS. Environmental determinants of the distribution of Chagas disease vector Triatoma dimidiata in Colombia. Am J Trop Med Hyg. 2016; 94(4): 767-74.
78. Parra-Henao G, Suárez-Escudero LC, González-Caro S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on ecological niche modeling. J Trop Med. 2016; 2016: 1439090.
79. Ceccarelli S, Rabinovich JE. Global climate change effects on Venezuela’s vulnerability to Chagas disease is linked to the geographic distribution of five triatomine species. J Med Entomol. 2015; 52(6): 1333-43.
80. Medone P, Ceccarelli S, Parham PE, Figuera A, Rabinovich JE. The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1665): 20130560.
81. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell. 2011; 222(11): 1810-9.
82. De La Vega GJ, Schilman PE. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America. Med Vet Entomol. 2018; 32(1): 1-13.
83. Sánchez-Cuervo AM, Aide TM, Clark ML, Etter A. Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS One. 2012; 7(8): e43943.
84. Justi SA, Galvão C, Schrago CG. Geological changes of the Americas and their influence on the diversification of the neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis. 2016; 10: e0004527.
85. Abad-Franch F, Monteiro FA, Jaramillo ON, Gurgel-Gonçalves R, Dias FB, Diotaiuti L. Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: a multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop. 2009; 110: 159-77.
86. Ibarra-Cerdeña CN, Zaldívar-Riverón A, Peterson AT, Sánchez- Cordero V, Ramsey JM. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas’ disease. PLoS Negl Trop Dis. 2014; 8(10): e3266.

Financial support: FAPES (award number - 011/2019) [The study was derived from the GSCN PhD thesis from the Programa de Pós-Graduação em Biologia Animal (PPGBAN) of UFES, which FAPES financed], CNPq [Since further work improvements, reviews, and submissions were made over GSCN participation in the Programa de Capacitação Institucional (PCI) of the Brazilian Ministry of Science, Technology, and Innovation (MCTI) at the National Institute of the Atlantic Forest (INMA) (CNPq award number - 317350/2023-4)].
+ Corresponding author: guisanchescn@gmail.com
ORCID https://orcid.org/0000-0001-9279-3017
Received 04 June 2024
Accepted 11 September 2024

HOW TO CITE
Corrêa-do-Nascimento GS, Galvão C, Leite GR. Investigating the distribution of a rare Colombo-Venezuelan kissing bug, Rhodnius neivai, Lent, 1953, using geographical information system-based analyses. Mem Inst Oswaldo Cruz. 2024; 119: e240106.

Our Location

Memórias do Instituto Oswaldo Cruz

Av. Brasil 4365, Castelo Mourisco 
sala 201, Manguinhos, 21040-900 
Rio de Janeiro, RJ, Brazil

Tel.: +55-21-2562-1222

This email address is being protected from spambots. You need JavaScript enabled to view it.

Support Program

logo iocb

logo governo federal03h 
faperj   cnpq capes